-- a constructor list initialization that unpacked an initializer list into
constructor arguments and
-- a list initialization that created as std::initializer_list and passed it
as the first argument to a constructor
in the AST. Use this flag while instantiating templates to provide the right
semantics for the resulting initialization.
llvm-svn: 213224
This reverts commit r211096. Looks like it broke the msvc build:
SemaOpenMP.cpp(140) : error C4519: default template arguments are only allowed on a class template
llvm-svn: 211113
Summary:
Previously, we would generate a single name for all reference
temporaries and allow LLVM to rename them for us. Instead, number the
reference temporaries as we build them in Sema.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D3554
llvm-svn: 207776
Remove UnaryTypeTraitExpr and switch all remaining type trait related handling
over to TypeTraitExpr.
The UTT/BTT/TT enum prefix and evaluation code is retained pending further
cleanup.
This is part of the ongoing work to unify type traits following the removal of
BinaryTypeTraitExpr in r197273.
llvm-svn: 198271
This caused some crazy crashes involving std::unordered_map being
deserialized from a PCH file and then template instantiation requiring
an explicit instantiation location; unfortunately I don't really know
how to come up with a minimal test case.
llvm-svn: 197764
There's nothing special about type traits accepting two arguments.
This commit eliminates BinaryTypeTraitExpr and switches all related handling
over to TypeTraitExpr.
Also fixes a CodeGen failure with variadic type traits appearing in a
non-constant expression.
The BTT/TT prefix and evaluation code is retained as-is for now but will soon
be further cleaned up.
This is part of the ongoing work to unify type traits.
llvm-svn: 197273
LLVM supports applying conversion instructions to vectors of the same number of
elements (fptrunc, fptosi, etc.) but there had been no way for a Clang user to
cause such instructions to be generated when using builtin vector types.
C-style casting on vectors is already defined in terms of bitcasts, and so
cannot be used for these conversions as well (without leading to a very
confusing set of semantics). As a result, this adds a __builtin_convertvector
intrinsic (patterned after the OpenCL __builtin_astype intrinsic). This is
intended to aid the creation of vector intrinsic headers that create generic IR
instead of target-dependent intrinsics (in other words, this is a generic
_mm_cvtepi32_ps). As noted in the documentation, the action of
__builtin_convertvector is defined in terms of the action of a C-style cast on
each vector element.
llvm-svn: 190915
In addition to storing more useful information in the AST, this
fixes a semantic check in template instantiation which checks whether
the l-paren location is valid.
Fixes PR16903.
llvm-svn: 188495
Summary:
Source-centric tools need access to the location of a C++11
lambda expression's capture-default ('&' or '=') when it's present.
It's possible for them to find it by re-lexing and re-implementing
rules that Clang's parser has already applied, but the cost of storing
the SourceLocation and making it available to them is 32 bits per
LambdaExpr (a small delta, proportionally), and the simplification in
client code is significant.
Reviewers: rsmith
Reviewed By: rsmith
CC: cfe-commits, klimek, revane
Differential Revision: http://llvm-reviews.chandlerc.com/D1192
llvm-svn: 188121
This is the same way GenericSelectionExpr works, and it's generally a
more consistent approach.
A large part of this patch is devoted to caching the value of the condition
of a ChooseExpr; it's needed to avoid threading an ASTContext into
IgnoreParens().
Fixes <rdar://problem/14438917>.
llvm-svn: 186738
Introduce CXXStdInitializerListExpr node, representing the implicit
construction of a std::initializer_list<T> object from its underlying array.
The AST representation of such an expression goes from an InitListExpr with a
flag set, to a CXXStdInitializerListExpr containing a MaterializeTemporaryExpr
containing an InitListExpr (possibly wrapped in a CXXBindTemporaryExpr).
This more detailed representation has several advantages, the most important of
which is that the new MaterializeTemporaryExpr allows us to directly model
lifetime extension of the underlying temporary array. Using that, this patch
*drastically* simplifies the IR generation of this construct, provides IR
generation support for nested global initializer_list objects, fixes several
bugs where the destructors for the underlying array would accidentally not get
invoked, and provides constant expression evaluation support for
std::initializer_list objects.
llvm-svn: 183872
handle temporaries which have been lifetime-extended to static storage duration
within constant expressions. This correctly handles nested lifetime extension
(through reference members of aggregates in aggregate initializers) but
non-constant-expression emission hasn't yet been updated to do the same.
llvm-svn: 183283
Add serialization for captured statements and captured decls. Also add
a const_capture_iterator to CapturedStmt.
Test contributed by Wei Pan
Differential Revision: http://llvm-reviews.chandlerc.com/D727
llvm-svn: 181048
the actual parser and support arbitrary id-expressions.
We're actually basically set up to do arbitrary expressions here
if we wanted to.
Assembly operands permit things like A::x to be written regardless
of language mode, which forces us to embellish the evaluation
context logic somewhat. The logic here under template instantiation
is incorrect; we need to preserve the fact that an expression was
unevaluated. Of course, template instantiation in general is fishy
here because we have no way of delaying semantic analysis in the
MC parser. It's all just fishy.
I've also fixed the serialization of MS asm statements.
This commit depends on an LLVM commit.
llvm-svn: 180976
Add a CXXDefaultInitExpr, analogous to CXXDefaultArgExpr, and use it both in
CXXCtorInitializers and in InitListExprs to represent a default initializer.
There's an additional complication here: because the default initializer can
refer to the initialized object via its 'this' pointer, we need to make sure
that 'this' points to the right thing within the evaluation.
llvm-svn: 179958
This change also makes the serialisation store the required semantics,
fixing an issue where PPC128 was always assumed when re-reading a
128-bit value.
llvm-svn: 173139
copy-list-initialization (and doesn't add an additional copy step):
Fill in the ListInitialization bit when creating a CXXConstructExpr. Use it
when instantiating initializers in order to correctly handle instantiation of
copy-list-initialization. Teach TreeTransform that function arguments are
initializations, and so need this special treatment too. Finally, remove some
hacks which were working around SubstInitializer's shortcomings.
llvm-svn: 170489
allocated using the allocator associated with an ASTContext.
Use this inside CXXRecordDecl::DefinitionData instead of an UnresolvedSet to
avoid a potential memory leak.
rdar://12761275
llvm-svn: 168771
Spent longer than reasonable looking for a nice way to test this & decided to
give up for now. Open to suggestions/requests. Richard Smith suggested adding
something to ASTMatchers but it wasn't readily apparent how to test this with
that.
llvm-svn: 167507
Clang will now honor the FP_CONTRACT pragma and emit LLVM
fmuladd intrinsics for expressions of the form A * B + C (when they occur in a
single statement).
llvm-svn: 164989
calculating it recursively.
boost::assign::tuple_list_of uses the trick of chaining call operator expressions in order to declare a "list of tuples", e.g:
std::vector<tuple> v = boost::assign::tuple_list_of(1, "foo")(2, "bar")(3, "qqq");
Due to CXXOperatorCallExpr calculating its source range recursively we would get
significant slowdowns with a large number of chained call operator expressions and the
potential for stack overflow.
rdar://11350116
llvm-svn: 155848
attached. Since we do not support any attributes which appertain to a statement
(yet), testing of this is necessarily quite minimal.
Patch by Alexander Kornienko!
llvm-svn: 154723
reference is going to message the setter, the getter, or both.
Having this info on the ObjCPropertyRefExpr node makes it easier for AST
clients (like libclang) to reason about the meaning of the property reference.
[AST/Sema]
-Use 2 bits (with a PointerIntPair) in ObjCPropertyRefExpr to record the above info
-Have ObjCPropertyOpBuilder set the info appropriately.
[libclang]
-When there is an implicit property reference (property syntax using methods)
have clang_getCursorReferenced return a cursor for the method. If the property
reference is going to result in messaging both the getter and the setter choose
to return a cursor for the setter because it is less obvious from source inspection
that the setter is getting called.
The general idea has the seal of approval by John.
rdar://11151621
llvm-svn: 153709
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
analysis to make the AST representation testable. They are represented by a
new UserDefinedLiteral AST node, which is a sugared CallExpr. All semantic
properties, including full CodeGen support, are achieved for free by this
representation.
UserDefinedLiterals can never be dependent, so no custom instantiation
behavior is required. They are mangled as if they were direct calls to the
underlying literal operator. This matches g++'s apparent behavior (but not its
actual mangling, which is broken for literal-operator-ids).
User-defined *string* literals are now fully-operational, but the semantic
analysis is quite hacky and needs more work. No other forms of user-defined
literal are created yet, but the AST support for them is present.
This patch committed after midnight because we had already hit the quota for
new kinds of literal yesterday.
llvm-svn: 152211
NSNumber, and boolean literals. This includes both Sema and Codegen support.
Included is also support for new Objective-C container subscripting.
My apologies for the large patch. It was very difficult to break apart.
The patch introduces changes to the driver as well to cause clang to link
in additional runtime support when needed to support the new language features.
Docs are forthcoming to document the implementation and behavior of these features.
llvm-svn: 152137
that provides the behavior of the C++11 library trait
std::is_trivially_constructible<T, Args...>, which can't be
implemented purely as a library.
Since __is_trivially_constructible can have zero or more arguments, I
needed to add Yet Another Type Trait Expression Class, this one
handling arbitrary arguments. The next step will be to migrate
UnaryTypeTrait and BinaryTypeTrait over to this new, more general
TypeTrait class.
Fixes the Clang side of <rdar://problem/10895483> / PR12038.
llvm-svn: 151352
Holding the constructor directly makes no sense when list-initialized arrays come into play. The constructor is now held in a CXXConstructExpr, if construction is what is done. The new design can also distinguish properly between list-initialization and direct-initialization, as well as implicit default-initialization constructors and explicit value-initialization constructors. Finally, doing it this way removes redundance from the AST because CXXNewExpr doesn't try to handle both the allocation and the initialization responsibilities.
This breaks the static analysis of new expressions. I've filed PR12014 to track this.
llvm-svn: 150682
- Capturing variables by-reference and by-copy within a lambda
- The representation of lambda captures
- The creation of the non-static data members in the lambda class
that store the captured variables
- The initialization of the non-static data members from the
captured variables
- Pretty-printing lambda expressions
There are a number of FIXMEs, both explicit and implied, including:
- Creating a field for a capture of 'this'
- Improved diagnostics for initialization failures when capturing
variables by copy
- Dealing with temporaries created during said initialization
- Template instantiation
- AST (de-)serialization
- Binding and returning the lambda expression; turning it into a
proper temporary
- Lots and lots of semantic constraints
- Parameter pack captures
llvm-svn: 149977
was constructed, e.g. for a property access.
This allows the selector identifier locations machinery for ObjCMessageExpr
to function correctly, in that there are not real locations to handle/report for
such a message.
llvm-svn: 148013
when deserialized, fixing random crashes in libclang.
Also simplifies how OpaqueValueExprs are [de]serialized.
The reader/writer automatically retains pointer equality of sub-statements (when a
statement node is referenced in multiple nodes), so no need to manually handle it.
llvm-svn: 145752
library, since modules cut across all of the libraries. Rename
serialization::Module to serialization::ModuleFile to side-step the
annoying naming conflict. Prune a bunch of ModuleMap.h includes that
are no longer needed (most files only needed the Module type).
llvm-svn: 145538