The original version of the pass could underestimate the length of a backward
branch in cases like:
alignment to N bytes or more
...
relaxable branch A
...
foo: (aligned to M<N bytes)
...
bar: (aligned to N bytes)
...
relaxable branch B to foo
We don't add any misalignment gap for "bar" because N bytes of alignment
had already been reached earlier in the function. In this case, assuming
that A is relaxed can push "foo" closer to "bar", and make B appear to be
in range. Similar problems can occur for forward branches.
I don't think it's possible to create blocks with mixed alignments as
things stand, not least because we haven't yet defined getPrefLoopAlignment()
for SystemZ (that would need benchmarking). So I don't think we can test
this yet.
Thanks to Rafael Espíndola for spotting the bug.
llvm-svn: 182460
clang-format was a bit too aggressive when trying to keep labels and
values on the same line.
Before:
llvm::outs()
<< "aaaaaaaaaaaaaaaaaaa: " << aaaaaaaaaaaaa(
aaaaaaaaaaaaaaaaaaaaaaaaaaaa);
After:
llvm::outs() << "aaaaaaaaaaaaaaaaaaa: "
<< aaaaaaaaaaaaa(aaaaaaaaaaaaaaaaaaaaaaaaaaaa);
llvm-svn: 182458
This only affects styles that prevent bin packing. There, a break after
a template declaration also forced a line break after the function name.
Before:
template <class SomeType, class SomeOtherType>
SomeType
SomeFunction(SomeType Type, SomeOtherType OtherType) {}
After:
template <class SomeType, class SomeOtherType>
SomeType SomeFunction(SomeType Type, SomeOtherType OtherType) {}
This fixes llvm.org/PR16072.
llvm-svn: 182457
If clang-format is confronted with long and deeply nested lines (e.g.
complex static initializers or function calls), it can currently try too
hard to find the optimal solution and never finish. The reason is that
the memoization does not work effectively for deeply nested lines.
This patch removes an earlier workaround and instead opts for
accepting a non-optimal solution in rare cases. However, it only does
so only in cases where it would have to analyze an excessive number of
states (currently set to 10000 - the most complex line in Format.cpp
requires ~800 states) so this should not change the behavior in a
relevant way.
llvm-svn: 182449
the C API to provide their own way of allocating JIT memory (both code
and data) and finalizing memory permissions (page protections, cache
flush).
llvm-svn: 182448
The crash is triggered by the newly added option (-analyzer-config report-in-main-source-file=true) introduced in r182058.
Note, ideally, we’d like to report the issue within the main source file here as well.
For now, just do not crash.
llvm-svn: 182445
Another fix to make sure that if we aren't able to extract an object file for any reason, we don't crash when trying to parse the debug map info.
llvm-svn: 182441
*that* easy...
Try a bit harder to disambiguate. This is mostly straightforward, but for
=-style initializers, we actually need to know where an expression ends:
[foo = bar baz]
is a message send, whereas
[foo = bar + baz]
is a lambda-introducer. Handle this by parsing the expression eagerly, and
replacing it with an annotation token. By chance, we use the *exact same*
parsing rules in both cases (except that we need to assume we're inside a
message send for the parse, to turn off various forms of inapplicable
error recovery).
llvm-svn: 182432
Solaris doesn't have an endian.h header, but SPARC is the only
big-endian architecture that runs Solaris, so just use that to detect
endianness at compile time.
llvm-svn: 182419
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
This is a fixed version of r182407 and r182411. That first revision
broke builds because I forgot to move the conditional includes of
various POSIX headers from SectionMemoryManager into
RTDyldMemoryManager. Those includes are necessary because of how
getPointerToNamedFunction works around the glibc libc_nonshared.a thing.
The latter revision still broke things because I forgot to include
llvm/Config/config.h.
llvm-svn: 182418
Yet another implementation of the python in dSYM autoload :)
This time we are going with a ternary setting:
true - load, do not warn
false - do not load, do not warn
warn - do not load, warn (default)
llvm-svn: 182414
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
This is a fixed version of r182407. That revision broke builds because I
forgot to move the conditional includes of various POSIX headers from
SectionMemoryManager into RTDyldMemoryManager. Those includes are
necessary because of how getPointerToNamedFunction works around the
glibc libc_nonshared.a thing.
llvm-svn: 182411
the C API to provide their own way of allocating JIT memory (both code
and data) and finalizing memory permissions (page protections, cache
flush).
llvm-svn: 182408
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
llvm-svn: 182407
common function. The C++1y contextual implicit conversion rules themselves are
not yet implemented, however.
This also fixes a subtle bug where template instantiation context notes were
dropped for diagnostics coming from conversions for integral constant
expressions -- we were implicitly slicing a SemaDiagnosticBuilder into a
DiagnosticBuilder when producing these diagnostics, and losing their context
notes in the process.
llvm-svn: 182406