Commit Graph

15 Commits

Author SHA1 Message Date
Nicolas Vasilache cab671d166 Lower affine control flow to std control flow to LLVM dialect
This CL splits the lowering of affine to LLVM into 2 parts:
1. affine -> std
2. std -> LLVM

The conversions mostly consists of splitting concerns between the affine and non-affine worlds from existing conversions.
Short-circuiting of affine `if` conditions was never tested or exercised and is removed in the process, it can be reintroduced later if needed.

LoopParametricTiling.cpp is updated to reflect the newly added ForOp::build.

PiperOrigin-RevId: 257794436
2019-07-12 08:44:28 -07:00
River Riddle 89bc449cee Standardize the value numbering in the AsmPrinter.
Change the AsmPrinter to number values breadth-first so that values in adjacent regions can have the same name. This allows for ModuleOp to contain operations that produce results. This also standardizes the special name of region entry arguments to "arg[0-9+]" now that Functions are also operations.

PiperOrigin-RevId: 257225069
2019-07-09 10:41:00 -07:00
Andy Davis f487d20bf0 Add affine-to-standard lowerings for affine.load/store/dma_start/dma_wait.
PiperOrigin-RevId: 255960171
2019-07-01 09:56:22 -07:00
River Riddle af9760fe18 Replace remaining usages of the Instruction class with Operation.
PiperOrigin-RevId: 240777521
2019-03-29 17:50:04 -07:00
River Riddle 832567b379 NFC: Rename the 'for' operation in the AffineOps dialect to 'affine.for' and set the namespace of the AffineOps dialect to 'affine'.
PiperOrigin-RevId: 240165792
2019-03-29 17:39:03 -07:00
River Riddle 9c6e92360c NFC: Rename the 'if' operation in the AffineOps dialect to 'affine.if'.
PiperOrigin-RevId: 240071154
2019-03-29 17:36:53 -07:00
Uday Bondhugula c419accea3 Automated rollback of changelist 232728977.
PiperOrigin-RevId: 232944889
2019-03-29 16:21:38 -07:00
River Riddle 13a45c7194 Add verification for AffineApply/AffineFor/AffineIf dimension and symbol operands. This also allows a DimOp to be a valid dimension identifier if its operand is a valid dimension identifier.
PiperOrigin-RevId: 232923468
2019-03-29 16:21:08 -07:00
Uday Bondhugula 4ba8c9147d Automated rollback of changelist 232717775.
PiperOrigin-RevId: 232807986
2019-03-29 16:19:33 -07:00
River Riddle fd2d7c857b Rename the 'if' operation in the AffineOps dialect to 'affine.if' and namespace
the AffineOps dialect with 'affine'.

PiperOrigin-RevId: 232728977
2019-03-29 16:18:59 -07:00
River Riddle 90d10b4e00 NFC: Rename the 'for' operation in the AffineOps dialect to 'affine.for'. The is the second step to adding a namespace to the AffineOps dialect.
PiperOrigin-RevId: 232717775
2019-03-29 16:17:59 -07:00
River Riddle 3227dee15d NFC: Rename affine_apply to affine.apply. This is the first step to adding a namespace to the affine dialect.
PiperOrigin-RevId: 232707862
2019-03-29 16:17:29 -07:00
Chris Lattner f60a0ba61c Incremental progress to move the testsuite towards single-result affine_apply
instructions.

PiperOrigin-RevId: 230775607
2019-03-29 15:34:53 -07:00
Alex Zinenko 9003490287 Implement branch-free single-division lowering of affine division/remainder
This implements the lowering of `floordiv`, `ceildiv` and `mod` operators from
affine expressions to the arithmetic primitive operations.  Integer division
rules in affine expressions explicitly require rounding towards either negative
or positive infinity unlike machine implementations that round towards zero.
In the general case, implementing `floordiv` and `ceildiv` using machine signed
division requires computing both the quotient and the remainder.  When the
divisor is positive, this can be simplified by adjusting the dividend and the
quotient by one and switching signs.

In the current use cases, we are unlikely to encounter affine expressions with
negative divisors (affine divisions appear in loop transformations such as
tiling that guarantee that divisors are positive by construction).  Therefore,
it is reasonable to use branch-free single-division implementation.  In case of
affine maps, divisors can only be literals so we can check the sign and
implement the case for negative divisors when the need arises.

The affine lowering pass can still fail when applied to semi-affine maps
(division or modulo by a symbol).

PiperOrigin-RevId: 228668181
2019-03-29 15:07:40 -07:00
Alex Zinenko 0c4ee54198 Merge LowerAffineApplyPass into LowerIfAndForPass, rename to LowerAffinePass
This change is mechanical and merges the LowerAffineApplyPass and
LowerIfAndForPass into a single LowerAffinePass.  It makes a step towards
defining an "affine dialect" that would contain all polyhedral-related
constructs.  The motivation for merging these two passes is based on retiring
MLFunctions and, eventually, transforming If and For statements into regular
operations.  After that happens, LowerAffinePass becomes yet another
legalization.

PiperOrigin-RevId: 227566113
2019-03-29 14:52:52 -07:00