It broke, at least, i686 target. It is reproducible with "llc -mtriple=i686-unknown".
FYI, it didn't appear to add either "-O0" or "-fast-isel".
llvm-svn: 195339
In ELF and COFF an alias is just another offset in a section. There is no way
to represent an alias to something in another file.
In MachO, the spec has the N_INDR type which should allow for exactly that, but
is not currently implemented. Given that it is specified but not implemented,
we error in codegen to avoid miscompiling but don't reject aliases to
declarations in the verifier to leave the option open of implementing it.
In the past we have used alias to declarations as a way of implementing
weakref, which is why it exists in some old tests which this patch updates.
llvm-svn: 194705
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
llvm-svn: 185135
test/CodeGen/Generic/2008-02-20-MatchingMem.ll: Test contains inline assembly not supported by Hexagon.
Following tests are XFAILed due to multiple return values which Hexagon doesn't support.
test/CodeGen/Generic/multiple-return-values-cross-block-with-invoke.ll
test/CodeGen/Generic/select-cc.ll
test/CodeGen/Generic/vector.ll
llvm-svn: 177912
- recognize string "{memory}" in the MI generation
- mark as mayload/maystore when there's a memory clobber constraint.
PR14859.
Patch by Krzysztof Parzyszek
llvm-svn: 172228
bitwidth op back to the original size. If we reduce ANDs then this can cause
an endless loop. This patch changes the ZEXT to ANY_EXTEND if the demanded bits
are equal or smaller than the size of the reduced operation.
llvm-svn: 170505
the case of multiple edges from one block to another.
A simple example is a switch statement with multiple values to the same
destination. The definition of an edge is modified from a pair of blocks to
a pair of PredBlock and an index into the successors.
Also set the weight correctly when building SelectionDAG from LLVM IR,
especially when converting a Switch.
IntegersSubsetMapping is updated to calculate the weight for each cluster.
llvm-svn: 162572
I really need to find a way to automate this, but I can't come up with a regex
that has no false positives while handling tricky cases like custom check
prefixes.
llvm-svn: 162097
This is still a work in progress but I believe it is currently good enough
to fix PR13122 "Need unit test driver for codegen IR passes". For example,
you can run llc with -stop-after=loop-reduce to have it dump out the IR after
running LSR. Serializing machine-level IR is not yet supported but we have
some patches in progress for that.
The plan is to serialize the IR to a YAML file, containing separate sections
for the LLVM IR, machine-level IR, and whatever other info is needed. Chad
suggested that we stash the stop-after pass in the YAML file and use that
instead of the start-after option to figure out where to restart the
compilation. I think that's a great idea, but since it's not implemented yet
I put the -start-after option into this patch for testing purposes.
llvm-svn: 159570
versions of Bash. In addition, I can back out the change to the lit
built-in shell test runner to support this.
This should fix the majority of fallout on Darwin, but I suspect there
will be a few straggling issues.
llvm-svn: 159544
up to r158925 were handled as processor specific. Making them
generic and putting tests for these modifiers in the CodeGen/Generic
directory caused a number of targets to fail.
This commit addresses that problem by having the targets call
the generic routine for generic modifiers that they don't currently
have explicit code for.
For now only generic print operands 'c' and 'n' are supported.vi
Affected files:
test/CodeGen/Generic/asm-large-immediate.ll
lib/Target/PowerPC/PPCAsmPrinter.cpp
lib/Target/NVPTX/NVPTXAsmPrinter.cpp
lib/Target/ARM/ARMAsmPrinter.cpp
lib/Target/XCore/XCoreAsmPrinter.cpp
lib/Target/X86/X86AsmPrinter.cpp
lib/Target/Hexagon/HexagonAsmPrinter.cpp
lib/Target/CellSPU/SPUAsmPrinter.cpp
lib/Target/Sparc/SparcAsmPrinter.cpp
lib/Target/MBlaze/MBlazeAsmPrinter.cpp
lib/Target/Mips/MipsAsmPrinter.cpp
MSP430 isn't represented because it did not even run with
the long existing 'c' modifier and it was not apparent what
needs to be done to get it inline asm ready.
Contributer: Jack Carter
llvm-svn: 159203
Verify that all paths from the entry block to a virtual register read
pass through a def. Enable this check even when MRI->isSSA() is false.
Verify that the live range of a virtual register is live out of all
predecessor blocks, even for PHI-values.
This requires that PHIElimination sometimes inserts IMPLICIT_DEF
instruction in predecessor blocks.
llvm-svn: 159150
to be generic across architectures. It has the
following description in the gnu sources:
Negate the immediate constant
Several Architectures such as x86 have local implementations
of operand modifier 'n' which go beyond the above description
slightly. This won't affect them.
Affected files:
lib/CodeGen/AsmPrinter/AsmPrinterInlineAsm.cpp
Added 'n' to the switch cases.
test/CodeGen/Generic/asm-large-immediate.ll
Generic compiled test (x86 for me)
test/CodeGen/Mips/asm-large-immediate.ll
Mips compiled version of the generic one
Contributer: Jack Carter
llvm-svn: 158939
The fast register allocator is not supposed to work in the optimizing
pipeline. It doesn't make sense to compute live intervals, run full copy
coalescing, and then run RAFast.
Fast register allocation in the optimizing pipeline is better done by
RABasic.
llvm-svn: 158242
Besides adding the new insertPass function, this patch uses it to
enhance the existing -print-machineinstrs so that the MachineInstrs
after a specific pass can be printed.
Patch by Bin Zeng!
llvm-svn: 157655
more than two adjacent ranges needed to be merged. The new version should be
able to handle an arbitrary sequence of adjancent ranges.
llvm-svn: 149588
I followed three heuristics for deciding whether to set 'true' or
'false':
- Everything target independent got 'true' as that is the expected
common output of the GCC builtins.
- If the target arch only has one way of implementing this operation,
set the flag in the way that exercises the most of codegen. For most
architectures this is also the likely path from a GCC builtin, with
'true' being set. It will (eventually) require lowering away that
difference, and then lowering to the architecture's operation.
- Otherwise, set the flag differently dependending on which target
operation should be tested.
Let me know if anyone has any issue with this pattern or would like
specific tests of another form. This should allow the x86 codegen to
just iteratively improve as I teach the backend how to differentiate
between the two forms, and everything else should remain exactly the
same.
llvm-svn: 146370
The decision was to pack the bits. Currently no codegen supports this.
Currently, all of the bits in the vector are saved into the same address
in memory.
llvm-svn: 142149
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
llvm-svn: 133337
patch we add a flag to enable a new type legalization decision - to promote
integer elements in vectors. Currently, the rest of the codegen does not support
this kind of legalization. This flag will be removed when the transition is
complete.
llvm-svn: 132394
The DAGCombiner created illegal BUILD_VECTOR operations.
The patch added a check that either illegal operations are
allowed or that the created operation is legal.
llvm-svn: 125435
In the bottom-up selection DAG scheduling, handle two-address
instructions that read/write unspillable registers. Treat
the entire chain of two-address nodes as a single live range.
llvm-svn: 122472
sequence of loads and stores was being generated to perform the
copy on the x86 targets if the parameter was less than 4 byte
aligned, causing llc to use up vast amounts of memory and time.
Use a "rep movs" form instead. PR7170.
llvm-svn: 118260
expansion is the same as that used by LegalizeDAG.
The resulting code sucks in terms of performance/codesize on x86-32 for a
64-bit operation; I haven't looked into whether different expansions might be
better in general.
llvm-svn: 105378
otherwise the SmallVector it contains doesn't free its memory.
In most cases LiveIntervalAnalysis could get away by not calling the destructor,
because VNInfos are bumpptr-allocated, and smallvectors usually don't grow.
However when the SmallVector does grow it always leaks.
This is the valgrind shown leak from the original testcase:
==8206== 18,304 bytes in 151 blocks are definitely lost in loss record 164 of 164
==8206== at 0x4A079C7: operator new(unsigned long) (vg_replace_malloc.c:220)
==8206== by 0x4DB7A7E: llvm::SmallVectorBase::grow_pod(unsigned long, unsigned long) (in /home/edwin/clam/git/builds/defaul
t/libclamav/.libs/libclamav.so.6.1.0)
==8206== by 0x4F90382: llvm::VNInfo::addKill(llvm::SlotIndex) (in /home/edwin/clam/git/builds/default/libclamav/.libs/libcl
amav.so.6.1.0)
==8206== by 0x5126B5C: llvm::LiveIntervals::handleVirtualRegisterDef(llvm::MachineBasicBlock*, llvm::ilist_iterator<llvm::M
achineInstr>, llvm::SlotIndex, llvm::MachineOperand&, unsigned int, llvm::LiveInterval&) (in /home/edwin/clam/git/builds/defau
lt/libclamav/.libs/libclamav.so.6.1.0)
==8206== by 0x512725E: llvm::LiveIntervals::handleRegisterDef(llvm::MachineBasicBlock*, llvm::ilist_iterator<llvm::MachineI
nstr>, llvm::SlotIndex, llvm::MachineOperand&, unsigned int) (in /home/edwin/clam/git/builds/default/libclamav/.libs/libclamav
.so.6.1.0)
==8206== by 0x51278A8: llvm::LiveIntervals::computeIntervals() (in /home/edwin/clam/git/builds/default/libclamav/.libs/libc
lamav.so.6.1.0)
==8206== by 0x5127CB4: llvm::LiveIntervals::runOnMachineFunction(llvm::MachineFunction&) (in /home/edwin/clam/git/builds/de
fault/libclamav/.libs/libclamav.so.6.1.0)
==8206== by 0x4DAE935: llvm::FPPassManager::runOnFunction(llvm::Function&) (in /home/edwin/clam/git/builds/default/libclama
v/.libs/libclamav.so.6.1.0)
==8206== by 0x4DAEB10: llvm::FunctionPassManagerImpl::run(llvm::Function&) (in /home/edwin/clam/git/builds/default/libclama
v/.libs/libclamav.so.6.1.0)
==8206== by 0x4DAED3D: llvm::FunctionPassManager::run(llvm::Function&) (in /home/edwin/clam/git/builds/default/libclamav/.l
ibs/libclamav.so.6.1.0)
==8206== by 0x4D8BE8E: llvm::JIT::runJITOnFunctionUnlocked(llvm::Function*, llvm::MutexGuard const&) (in /home/edwin/clam/git/builds/default/libclamav/.libs/libclamav.so.6.1.0)
==8206== by 0x4D8CA72: llvm::JIT::getPointerToFunction(llvm::Function*) (in /home/edwin/clam/git/builds/default/libclamav/.libs/libclamav.so.6.1.0)
llvm-svn: 99400
to LLVM IR changes with addr label weirdness. In the testcase, we
generate references to the two bb's when codegen'ing the first
function:
_test1: ## @test1
leaq Ltmp0(%rip), %rax
..
leaq Ltmp1(%rip), %rax
Then continue to codegen the second function where the blocks
get merged. We're now smart enough to emit both labels, producing
this code:
_test_fun: ## @test_fun
## BB#0: ## %entry
Ltmp1: ## Block address taken
Ltmp0:
## BB#1: ## %ret
movl $-1, %eax
ret
Rejoice.
llvm-svn: 98595
label is generated, but then the block is deleted. Since the
value is undefined, we just emit the label right after the entry
label of the function. It might matter that the label is in the
same section as the function was afterall.
llvm-svn: 98579
the problem only shows for msp430 and pic16 which is why it specifies
them using -march. But it is wrong to put such tests in CodeGen/Generic,
since not everyone builds these targets. Put a copy of the test in each
of the target test directories.
llvm-svn: 90005
which was an expensive checks failure due to a bug in the checking. This
patch in essence reverts the original fix for PR3393, and refixes it by a
tweak to the way expensive checking is done.
llvm-svn: 89454
to break up CFG diamonds by banishing one of the blocks to the end of
the function, which is bad for code density and branch size.
This does pessimize MultiSource/Benchmarks/Ptrdist/yacr2, the
benchmark cited as the reason for the change, however I've examined
the code and it looks more like a case of gaming a particular
branch than of being generally applicable.
llvm-svn: 84803
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
all Darwin targets; could be split into separate tests for
the chip subdirectories, but from Chris' last mail on testing
I assume he'd rather have only one test. Generic seems to be
the best available, maybe there should be a Darwin subdirectory?
llvm-svn: 79877
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
code in preparation for code generation. The main thing it does
is handle the case when eh.exception calls (and, in a future
patch, eh.selector calls) are far away from landing pads. Right
now in practice you only find eh.exception calls close to landing
pads: either in a landing pad (the common case) or in a landing
pad successor, due to loop passes shifting them about. However
future exception handling improvements will result in calls far
from landing pads:
(1) Inlining of rewinds. Consider the following case:
In function @f:
...
invoke @g to label %normal unwind label %unwinds
...
unwinds:
%ex = call i8* @llvm.eh.exception()
...
In function @g:
...
invoke @something to label %continue unwind label %handler
...
handler:
%ex = call i8* @llvm.eh.exception()
... perform cleanups ...
"rethrow exception"
Now inline @g into @f. Currently this is turned into:
In function @f:
...
invoke @something to label %continue unwind label %handler
...
handler:
%ex = call i8* @llvm.eh.exception()
... perform cleanups ...
invoke "rethrow exception" to label %normal unwind label %unwinds
unwinds:
%ex = call i8* @llvm.eh.exception()
...
However we would like to simplify invoke of "rethrow exception" into
a branch to the %unwinds label. Then %unwinds is no longer a landing
pad, and the eh.exception call there is then far away from any landing
pads.
(2) Using the unwind instruction for cleanups.
It would be nice to have codegen handle the following case:
invoke @something to label %continue unwind label %run_cleanups
...
handler:
... perform cleanups ...
unwind
This requires turning "unwind" into a library call, which
necessarily takes a pointer to the exception as an argument
(this patch also does this unwind lowering). But that means
you are using eh.exception again far from a landing pad.
(3) Bugpoint simplifications. When bugpoint is simplifying
exception handling code it often generates eh.exception calls
far from a landing pad, which then causes codegen to assert.
Bugpoint then latches on to this assertion and loses sight
of the original problem.
Note that it is currently rare for this pass to actually do
anything. And in fact it normally shouldn't do anything at
all given the code coming out of llvm-gcc! But it does fire
a few times in the testsuite. As far as I can see this is
almost always due to the LoopStrengthReduce codegen pass
introducing pointless loop preheader blocks which are landing
pads and only contain a branch to another block. This other
block contains an eh.exception call. So probably by tweaking
LoopStrengthReduce a bit this can be avoided.
llvm-svn: 72276
When a test fails with more than a pipeful of output on stdout AND stderr, one
of the DejaGnu programs blocks. The problem can be avoided by redirecting
stdout to a file.
llvm-svn: 71919
anything larger than 64-bits, avoiding a crash. This should
really be fixed to use APInts, though type legalization happens
to help us out and we get good code on the attached testcase at
least.
This fixes rdar://6836460
llvm-svn: 70360
Massive check in. This changes the "-fast" flag to "-O#" in llc. If you want to
use the old behavior, the flag is -O0. This change allows for finer-grained
control over which optimizations are run at different -O levels.
Most of this work was pretty mechanical. The majority of the fixes came from
verifying that a "fast" variable wasn't used anymore. The JIT still uses a
"Fast" flag. I'll change the JIT with a follow-up patch.
llvm-svn: 70343