It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313382
- Create helper function for resolving weak references.
- Add test that preproduces the crash.
Differential Revision: https://reviews.llvm.org/D37916
llvm-svn: 313381
We now avoid using absolute symbols on Windows (D37407 and D37408),
so this should work.
Fixes PR32770.
Differential Revision: https://reviews.llvm.org/D37883
llvm-svn: 313379
Microsoft's CRT already provides the const overloads, and it defines the
`_CRT_CONST_CORRECT_OVERLOADS` macro to indicate their presence. Check
for this macro before attempting to define our own const-correct
overloads, to avoid compiler warnings about casts dropping const
qualifiers.
llvm-svn: 313377
This caused PR34629: asserts firing when building Chromium. It also broke some
buildbots building test-suite as reported on the commit thread.
> Summary:
> 1/ Operand folding during complex pattern matching for LEAs has been
> extended, such that it promotes Scale to accommodate similar operand
> appearing in the DAG.
> e.g.
> T1 = A + B
> T2 = T1 + 10
> T3 = T2 + A
> For above DAG rooted at T3, X86AddressMode will no look like
> Base = B , Index = A , Scale = 2 , Disp = 10
>
> 2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
> so that if there is an opportunity then complex LEAs (having 3 operands)
> could be factored out.
> e.g.
> leal 1(%rax,%rcx,1), %rdx
> leal 1(%rax,%rcx,2), %rcx
> will be factored as following
> leal 1(%rax,%rcx,1), %rdx
> leal (%rdx,%rcx) , %edx
>
> 3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
> thus avoiding creation of any complex LEAs within a loop.
>
> Reviewers: lsaba, RKSimon, craig.topper, qcolombet
>
> Reviewed By: lsaba
>
> Subscribers: spatel, igorb, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 313376
Summary:
The checksums had already been placed in the IR, this patch allows
MCCodeView to actually write it out to an MCStreamer.
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D37157
llvm-svn: 313374
The early out for AVX2 in lowerV2X128VectorShuffle is positioned in a weird spot below some shuffle mask equivalency checks.
But I think we want to allow VPERMQ for any unary shuffle.
Differential Revision: https://reviews.llvm.org/D37893
llvm-svn: 313373
This fixes pr34301.
As the bug points out, we want to keep some relocations with undefined
weak symbols. This means that we cannot always claim that these
symbols are not preemptible as we do now.
Unfortunately, we cannot also just always claim that they are
preemptible. Doing so would, for example, cause us to try to create a
plt entry when we don't even have a dynamic symbol table.
What almost works is to say that weak undefined symbols are
preemptible if and only if we have a dynamic symbol table. Almost
because we don't want to fail the build trying to create a copy
relocation to a weak undefined.
llvm-svn: 313372
In CUDA-9 some of device-side math functions that we need are conditionally
defined within '#if _GLIBCXX_MATH_H'. We need to temporarily undo the guard
around inclusion of math_functions.hpp.
Differential Revision: https://reviews.llvm.org/D37906
llvm-svn: 313369
When handling a v64i1 build vector of constants on 32-bit targets we were creating an illegal i64 constant that we then bitcasted back to v64i1. We need to instead create two 32-bit constants, bitcast them to v32i1 and concat the result. We should also take care to handle the halves being all zeros/ones after the split.
This patch splits the build vector and then recursively lowers the two pieces. This allows us to handle the all ones and all zeros cases with minimal effort. Ideally we'd just do the split and concat, and let lowering get called again on the new nodes, but getNode has special handling for CONCAT_VECTORS that reassembles the pieces back into a single BUILD_VECTOR. Hopefully the two temporary BUILD_VECTORS we had to create to do this that don't get returned don't cause any issues.
Fixes PR34605.
Differential Revision: https://reviews.llvm.org/D37858
llvm-svn: 313366
Currently if we're inserting 0s into the upper elements of a vector register we insert an explicit move of the smaller register to implicitly zero the upper bits. But if we can prove that they are already zero we can skip that. This is based on a similar idea of what we do to avoid emitting explicit zero extends for GR32->GR64.
Unfortunately, this is harder for vector registers because there are several opcodes that don't have VEX equivalent instructions, but can write to XMM registers. Among these are SHA instructions and a MMX->XMM move. Bitcasts can also get in the way.
So for now I'm starting with explicitly allowing only VPMADDWD because we emit zeros in combineLoopMAddPattern. So that is placing extra instruction into the reduction loop.
I'd like to allow PSADBW as well after D37453, but that's currently blocked by a bitcast. We either need to peek through bitcasts or canonicalize insert_subvectors with zeros to remove bitcasts on the value being inserted.
Longer term we should probably have a cleanup pass that removes superfluous zeroing moves even when the producer is in another basic block which is something these isel tricks can't do. See PR32544.
Differential Revision: https://reviews.llvm.org/D37653
llvm-svn: 313365
__interface objects in MSVC are permitted to inherit from __interface types,
and interface-like types.
Additionally, there are two default interface-like types
(IUnknown and IDispatch) that all interface-like
types must inherit from.
Differential Revision: https://reviews.llvm.org/D37308
llvm-svn: 313364
Add a profitability heuristic to enable runtime unrolling of multi-exit
loop: There can be atmost two unique exit blocks for the loop and the
second exit block should be a deoptimizing block. Also, there can be one
other exiting block other than the latch exiting block. The reason for
the latter is so that we limit the number of branches in the unrolled
code to being at most the unroll factor. Deoptimizing blocks are rarely
taken so these additional number of branches created due to the
unrolling are predictable, since one of their target is the deopt block.
Reviewers: apilipenko, reames, evstupac, mkuper
Subscribers: llvm-commits
Reviewed by: reames
Differential Revision: https://reviews.llvm.org/D35380
llvm-svn: 313363
This removes the duplicate HVX instruction set for the 128-byte mode.
Single instruction set now works for both modes (64- and 128-byte).
llvm-svn: 313362
Patch removes one of OutputSectionFactory::addInputSec methods.
That allows to simplify reporting of discarded sections and
should help to D37561.
Differential revision: https://reviews.llvm.org/D37735
llvm-svn: 313361
This patch tackles with two issues:
Output stat st_[a|m|c]time fields were holding wrong values.
st_[a|m|c]time fields should have contained value of seconds and instead
these are filled with st_[a|m|c]time_nsec fields which hold nanoseconds.
Build fails for MIPS64 if SANITIZER_ANDROID. Recently <sys/stat.h> from
bionic introduced st_[a|m|c]time_nsec macros for compatibility with old NDKs
and those clashed with the field names of the <asm/stat.h> kernel_stat
structure.
To fix both issues and make sure sanitizer builds on all platforms, we must
un-define all compatibility macros and access the fields directly when
copying the 'time' fields.
Patch by Miodrag Dinic <miodrag.dinic@imgtec.com>
Differential Revision: https://reviews.llvm.org/D35671
llvm-svn: 313360
During runtime unrolling on loops with multiple exits, we update the
exit blocks with the correct phi values from both original and remainder
loop.
In this process, we lookup the VMap for the mapped incoming phi values,
but did not update the VMap if a default entry was generated in the VMap
during the lookup. This default value is generated when constants or
values outside the current loop are looked up.
This patch fixes the assertion failure when null entries are present in
the VMap because of this lookup. Added a testcase that showcases the
problem.
llvm-svn: 313358
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=34449
**Problem:**
Clang-tidy check misc-unused-parameters comments out parameter name omitting following characters (e.g. square brackets) what results in its complete removal. Compilation errors might occur after clang-tidy fix as well.
**Patch description:**
Changed removal range. The range should end after parameter name, not after whole parameter declarator (which might be followed by e.g. square brackets).
Reviewers: alexfh
Reviewed By: alexfh
Subscribers: JDevlieghere, xazax.hun, cfe-commits
Tags: #clang-tools-extra
Patch by Pawel Maciocha!
Differential Revision: https://reviews.llvm.org/D37846
llvm-svn: 313355
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=34016 - **"extern C part"**
**Problem:**
Due to the lack of "brace wrapping extern" flag, clang format does parse the block after **extern** keyword moving the opening bracket to the header line always!
**Patch description:**
A new style added, new configuration flag - **BraceWrapping.AfterExternBlock** that allows us to decide whether we want a break before brace or not.
Reviewers: djasper, krasimir
Reviewed By: krasimir
Subscribers: klimek, cfe-commits
Differential Revision: https://reviews.llvm.org/D37845
Contributed by @PriMee!
llvm-svn: 313354
This adds support for allowing v8f16 vector types, thus avoiding conversions
from/to single precision for these types. This is a follow up patch of
commits r311154 and r312104, which added support for scalars and v4f16
types, respectively.
Differential Revision: https://reviews.llvm.org/D37802
llvm-svn: 313351
removing them"
This was temporarily reverted, but now that the fix has been commited (r313197)
it should be put back in place.
https://bugs.llvm.org/show_bug.cgi?id=34502
This reverts commit 9ef93d9dc4c51568e858cf8203cd2c5ce8dca796.
llvm-svn: 313349
Patch tries to improve vectorization of the following code:
void add1(int * __restrict dst, const int * __restrict src) {
*dst++ = *src++;
*dst++ = *src++ + 1;
*dst++ = *src++ + 2;
*dst++ = *src++ + 3;
}
Allows to vectorize even if the very first operation is not a binary add, but just a load.
Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev, davide
Subscribers: llvm-commits, RKSimon
Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 313348
The RTTI structure is different on Windows when building under MS ABI.
Update the definition to reflect this. The structure itself contains an
area for caching the undecorated name (which is 0-initialized). The
decorated name has a bitfield followed by the linkage name. When
std::type_info::name is invoked for the first time, the runtime should
undecorate the name, cache it, and return the undecorated name. This
requires access to an implementation of __unDName. For now, return
the raw name.
This uses the fnv-1a hash to hash the name of the RTTI. We could use an
alternate hash (murmur? city?), but, this was the quickest to throw
together.
llvm-svn: 313344
Summary:
1/ Operand folding during complex pattern matching for LEAs has been
extended, such that it promotes Scale to accommodate similar operand
appearing in the DAG.
e.g.
T1 = A + B
T2 = T1 + 10
T3 = T2 + A
For above DAG rooted at T3, X86AddressMode will no look like
Base = B , Index = A , Scale = 2 , Disp = 10
2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
so that if there is an opportunity then complex LEAs (having 3 operands)
could be factored out.
e.g.
leal 1(%rax,%rcx,1), %rdx
leal 1(%rax,%rcx,2), %rcx
will be factored as following
leal 1(%rax,%rcx,1), %rdx
leal (%rdx,%rcx) , %edx
3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
thus avoiding creation of any complex LEAs within a loop.
Reviewers: lsaba, RKSimon, craig.topper, qcolombet
Reviewed By: lsaba
Subscribers: spatel, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 313343
Summary:
For readers unfamiliar with the XRay code base, reference the compiler-rt
implementation even though we're not allowed to share any code and explain
our little-endian views more clearly.
For code clarity either get rid of obvious comments or explain their
intentions, fix typos, correct coding style according to LLVM's standards
and manually CSE long expressions to point out it is the same expression.
Reviewers: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34339
llvm-svn: 313340
Somehow this was compiling without these methods having their arguments
passed to them. I used these methods in some code I wrote and it raised
an error on me. It appears no one else has used these methods let (LLD
uses setSymbolAndType however). This change resolves the issue.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D35100
llvm-svn: 313336
This patch is still breaking several multi-stage compiler-rt bots.
I already know what the fix is, but I want to get the bots green
for now and then try re-applying in the morning.
llvm-svn: 313335
Summary:
This will be used instead of the url field to track which commits need
to be merged.
This patch also drops support for version 1.x of the bugzilla CLI tool.
Reviewers: hansw, hans
Reviewed By: hans
Subscribers: hans, llvm-commits
Differential Revision: https://reviews.llvm.org/D37786
llvm-svn: 313334