Structure the definitions a bit more like the other classes.
The main change here is to split EXP with the done bit set
to a separate opcode, so we can set mayLoad = 1 so that it won't
be reordered before the other exp stores, since this has the special
constraint that if the done bit is set then this should be the last
exp in she shader.
Previously all exp instructions were inferred to have unmodeled
side effects.
llvm-svn: 288695
The generic infrastructure to compute the Newton series for reciprocal and
reciprocal square root was conceived to allow a target to compute the series
itself. However, the original code did not properly consider this condition
if returned by a target. This patch addresses the issues to allow a target
to compute the series on its own.
Differential revision: https://reviews.llvm.org/D22975
llvm-svn: 286523
This will prevent following regression when enabling i16 support (D18049):
test/CodeGen/AMDGPU/ctlz.ll
test/CodeGen/AMDGPU/ctlz_zero_undef.ll
Differential Revision: https://reviews.llvm.org/D25802
llvm-svn: 285716
I wanted to implement this as a target independent expansion, however when
targets say they want to expand FP_TO_FP16 what they actually want is
the unsafe math expansion when possible and expansion to a libcall in all
other cases.
The only way to make this work as a target independent would be to add logic
to target's TargetLowering construction to mark theses nodes as Expand when
LegalizeDAG can use the unsafe expansion and mark them as LibCall when it
cannot. I think this would be possible, but I think it would be too fragile
and complex as it would require targets to keep their expansion logic up
to date with the code in LegalizeDAG.
Reviewers: bogner, ab, t.p.northover, arsenm
Subscribers: wdng, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D25999
llvm-svn: 285704
This is a retry of r284495 which was reverted at r284513 due to use-after-scope bugs
caused by faulty usage of StringRef.
This version also renames a pair of functions:
getRecipEstimateDivEnabled()
getRecipEstimateSqrtEnabled()
as suggested by Eric Christopher.
original commit msg:
[Target] remove TargetRecip class; move reciprocal estimate isel functionality to TargetLowering
This is a follow-up to https://reviews.llvm.org/D24816 - where we changed reciprocal estimates to be function attributes
rather than TargetOptions.
This patch is intended to be a structural, but not functional change. By moving all of the
TargetRecip functionality into TargetLowering, we can remove all of the reciprocal estimate
state, shield the callers from the string format implementation, and simplify/localize the
logic needed for a target to enable this.
If a function has a "reciprocal-estimates" attribute, those settings may override the target's
default reciprocal preferences for whatever operation and data type we're trying to optimize.
If there's no attribute string or specific setting for the op/type pair, just use the target
default settings.
As noted earlier, a better solution would be to move the reciprocal estimate settings to IR
instructions and SDNodes rather than function attributes, but that's a multi-step job that
requires infrastructure improvements. I intend to work on that, but it's not clear how long
it will take to get all the pieces in place.
Differential Revision: https://reviews.llvm.org/D25440
llvm-svn: 284746
This is a follow-up to D24816 - where we changed reciprocal estimates to be function attributes
rather than TargetOptions.
This patch is intended to be a structural, but not functional change. By moving all of the
TargetRecip functionality into TargetLowering, we can remove all of the reciprocal estimate
state, shield the callers from the string format implementation, and simplify/localize the
logic needed for a target to enable this.
If a function has a "reciprocal-estimates" attribute, those settings may override the target's
default reciprocal preferences for whatever operation and data type we're trying to optimize.
If there's no attribute string or specific setting for the op/type pair, just use the target
default settings.
As noted earlier, a better solution would be to move the reciprocal estimate settings to IR
instructions and SDNodes rather than function attributes, but that's a multi-step job that
requires infrastructure improvements. I intend to work on that, but it's not clear how long
it will take to get all the pieces in place.
Differential Revision: https://reviews.llvm.org/D25440
llvm-svn: 284495
Summary:
The main challenge in lowering kernel arguments for AMDGPU is determing the
memory type of the argument. The generic calling convention code assumes
that only legal register types can be stored in memory, but this is not the
case for AMDGPU.
This consolidates all the logic AMDGPU uses for deducing memory types into a single
function. This will make it much easier to support different ABIs in the future.
Reviewers: arsenm
Subscribers: arsenm, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D24614
llvm-svn: 281781
This addresses a TODO to handle operations besides and. This
also starts eliminating no-op operations with a constant that
can emerge later.
llvm-svn: 281488
On modern Intel processors hardware SQRT in many cases is faster than RSQRT
followed by Newton-Raphson refinement. The patch introduces a simple heuristic
to choose between hardware SQRT instruction and Newton-Raphson software
estimation.
The patch treats scalars and vectors differently. The heuristic is that for
scalars the compiler should optimize for latency while for vectors it should
optimize for throughput. It is based on the assumption that throughput bound
code is likely to be vectorized.
Basically, the patch disables scalar NR for big cores and disables NR completely
for Skylake. Firstly, scalar SQRT has shorter latency than NR code in big cores.
Secondly, vector SQRT has been greatly improved in Skylake and has better
throughput compared to NR.
Differential Revision: https://reviews.llvm.org/D21379
llvm-svn: 277725
Only if the value is negative or positive is what matters,
so use a constant that doesn't require an instruction to
materialize.
These should really just emit the write exec directly,
but for stick with the kill pseudo-terminator.
llvm-svn: 275988
Due to visit order problems, in the case of an unaligned copy
the legalized DAG fails to eliminate extra instructions introduced
by the expansion of both unaligned parts.
llvm-svn: 274397
There was a combine before to handle the simple copy case.
Split this into handling loads and stores separately.
We might want to change how this handles some of the vector
extloads, since this can result in large code size increases.
llvm-svn: 274394
Split AMDGPUSubtarget into amdgcn/r600 specific subclasses.
This removes most of the static_casting of the basic codegen
classes everywhere, and tries to restrict the features
visible on the wrong target.
llvm-svn: 273652
The main sin this was committing was using terminator
instructions in the middle of the block, and then
not updating the block successors / predecessors.
Split the blocks up to avoid this and introduce new
pseudo instructions for branches taken with exec masking.
Also use a pseudo instead of emitting s_endpgm and erasing
it in the special case of a non-void return.
llvm-svn: 273467
Summary:
We now use a standard fixup type applying the pc-relative address of
constant address space variables, and we have the GlobalAddress lowering
code add the required 4 byte offset to the global address rather than
doing it as part of the fixup.
This refactoring will make it easier to use the same code for global
address space variables and also simplifies the code.
Re-commit this after fixing a bug where we were trying to use a
reference to a Triple object that had already been destroyed.
Reviewers: arsenm, kzhuravl
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21154
llvm-svn: 272705
Summary:
We now use a standard fixup type applying the pc-relative address of
constant address space variables, and we have the GlobalAddress lowering
code add the required 4 byte offset to the global address rather than
doing it as part of the fixup.
This refactoring will make it easier to use the same code for global
address space variables and also simplifies the code.
Reviewers: arsenm, kzhuravl
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21154
llvm-svn: 272675
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Summary:
Implement BUFFER_ATOMIC_CMPSWAP{,_X2} instructions on all GCN targets, and FLAT_ATOMIC_CMPSWAP{,_X2} on CI+.
32-bit instruction variants tested manually on Kabini and Bonaire. Tests and parts of code provided by Jan Veselý.
Patch by: Vedran Miletić
Reviewers: arsenm, tstellarAMD, nhaehnle
Subscribers: jvesely, scchan, kanarayan, arsenm
Differential Revision: http://reviews.llvm.org/D17280
llvm-svn: 265170
This breaks the tests that were meant for testing
64-bit inline immediates, so move those to shl where
they won't be broken up.
This should be repeated for the other related bit ops.
llvm-svn: 258095
Summary:
Return values can be stored in SGPRs (i32) and VGPRs (f32).
This will be used by functions which expect some bytecode or other binary to
be appended at the end. It allows defining in which registers the return
values will be stored.
v2: don't do this for compute shaders
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm
Differential Revision: http://reviews.llvm.org/D16033
llvm-svn: 257621
The hardware instruction's output on 0 is -1 rather than 32.
Eliminate a test and select to -1. This removes an extra instruction
from the compatability function with HSAIL's firstbit instruction.
llvm-svn: 257352
This basic combine was surprisingly missing.
AMDGPU legalizes many operations in terms of 32-bit vector components,
so not doing this results in many extra copies and subregister extracts
that need to be cleaned up later.
InstCombine already does this for the hasOneUse case. The target hook
is to fix a handful of tests which break (e.g. ARM/vmov.ll) which turn
from a vector materialize repeated immediate instruction to a constant
vector load with more scalar copies from it.
llvm-svn: 250129