fcgl option will make compilation stop after clang codeGen and output the llvm ir.
It is added to check clang codeGen output for HLSL.
It will be translated into -S -emit-llvm and -disable-llvm-passes.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124983
This patch adds support for `-save-temps` in `flang-new`, Flang's
compiler driver. The semantics of this option are inherited from Clang.
The file extension for temporary Fortran preprocessed files is set to
`i`. This is identical to what Clang uses for C (or C++) preprocessed
files. I have tried researching what other compilers do here, but I
couldn't find any definitive answers. One GFortran thread [1] suggests
that indeed it is not clear what the right approach should be.
Normally, various phases in Clang/Flang are combined. The `-save-temps`
option works by forcing the compiler to run every phase separately. As
there is no integrated assembler driver in Flang, user will have to use
`-save-temps` together with `-fno-integrated-as`. Otherwise, an
invocation to the integrated assembler would be generated generated,
which is going to fail (i.e. something equivalent to `clang -cc1as` from
Clang).
There are no specific plans for implementing an integrated assembler for
Flang for now. One possible solution would be to share it entirely with
Clang.
Note that on Windows you will get the following error when using
`-fno-integrated-as`:
```bash
flang-new: error: there is no external assembler that can be used on this platform
```
Unfortunately, I don't have access to a Windows machine to investigate
this. Instead, I marked the tests in this patch as unsupported on
Windows.
[1] https://gcc.gnu.org/bugzilla//show_bug.cgi?id=81615
Differential Revision: https://reviews.llvm.org/D124669
This reverts commit f6dff93641.
This diagnostic is also in the -Wcomment group, which is in the -Wall
group, so the diagnostic is enabled in a wider context than GCC does.
That turns out to be disruptive for the Linux kernel builds still using
-std=gnu89 because the kernel requires C source files to start with //
comments: https://kernel.org/doc/html/v5.18-rc5/process/license-rules.html#license-identifier-syntax
Compared to the old implementation:
* In C++, we only recurse into aggregate classes.
* Unnamed bit-fields are not printed.
* Constant evaluation is supported.
* Proper conversion is done when passing arguments through `...`.
* Additional arguments are supported and are injected prior to the
format string; this directly supports use with `fprintf`, for example.
* An arbitrary callable can be passed rather than only a function
pointer. In particular, in C++, a function template or overload set is
acceptable.
* All text generated by Clang is printed via `%s` rather than directly;
this avoids issues where Clang's pretty-printing output might itself
contain a `%` character.
* Fields of types that we don't know how to print are printed with a
`"*%p"` format and passed by address to the print function.
* No return value is produced.
Reviewed By: aaron.ballman, erichkeane, yihanaa
Differential Revision: https://reviews.llvm.org/D124221
A follow-up to 62b2a47 to centralize the logic that skips expressions
that the CFG does not emit. This allows client code to avoid
sprinkling this logic everywhere.
Add redirects in the transfer function to similarly skip such
expressions by forwarding the visit to the sub-expression.
Differential Revision: https://reviews.llvm.org/D124965
GCC warns with a pedantic warning when -std=gnu89, but Clang would only
diagnose in -std=c89 mode. Clang now matches the GCC behavior in both
modes.
Fixes#18427
The flag was added when the C++20 draft did not allow for concept
caching. The final C++20 standard permits the caching, so flag is
redundant. See http://wg21.link/p2104r0.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D125014
This change makes sure that Flang's driver recognises LLVM IR and BC as
supported file formats. To this end, `isFortran` is extended and renamed
as `isSupportedByFlang` (the latter better reflects the new
functionality).
New tests are added to verify that the target triple is correctly
overridden by the frontend driver's default value or the value specified
with `-triple`. Strictly speaking, this is not a functionality that's
new in this patch (it was added in D124664). This patch simply enables
us to write such tests and hence I'm including them here.
Differential Revision: https://reviews.llvm.org/D124667
If clang is passed "-include foo.h", it will rewrite to "-include-pch foo.h.pch"
before passing it to cc1, if foo.h.pch exists.
Existence is checked, but validity is not. This is probably a reasonable
assumption for the compiler itself, but not for clang-based tools where the
actual compiler may be a different version of clang, or even GCC.
In the end, we lose our -include, we gain a -include-pch that can't be used,
and the file often fails to parse.
I would like to turn this off for all non-clang invocations (i.e.
createInvocationFromCommandLine), but we have explicit tests of this behavior
for libclang and I can't work out the implications of changing it.
Instead this patch:
- makes it optional in the driver, default on (no change)
- makes it optional in createInvocationFromCommandLine, default on (no change)
- changes driver to do IO through the VFS so it can be tested
- tests the option
- turns the option off in clangd where the problem was reported
Subsequent patches should make libclang opt in explicitly and flip the default
for all other tools. It's probably also time to extract an options struct
for createInvocationFromCommandLine.
Fixes https://github.com/clangd/clangd/issues/856
Fixes https://github.com/clangd/vscode-clangd/issues/324
Differential Revision: https://reviews.llvm.org/D124970
Before C++20, MSVC was supporting not mentioning the template argument of the base class when initializing a class inheriting a templated base class.
So the following code compiled correctly:
```
template <class T>
class Base {
};
template <class T>
class Derived : public Base<T> {
public:
Derived() : Base() {}
};
void test() {
Derived<int> d;
}
```
See https://godbolt.org/z/Pxxe7nccx for a conformance view.
This patch adds support for such construct when in MSVC compatibility mode.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D124666
It's accumulating way too many optional params (see D124970)
While here, improve the name and the documentation.
Differential Revision: https://reviews.llvm.org/D124971
Reapply the change after fixing sanitizer errors.
The original problem was that `StringRef`s in `Matches` are pointing to
temporary local `std::string`s created by `path::convert_to_slash` in
the regex match call. This patch does the conversion up front in
container `FilePath`.
This reverts commit 2966f0fa50.
Differential Revision: https://reviews.llvm.org/D124964
This patch transforms the given input headers to relative include names
using header search entries and some heuritics.
For example: `/Path/To/Header.h` will be included as `<Header.h>` with a
search path of `-I /Path/To/`; and
`/Path/To/Framework.framework/Headers/Header.h` will be included as
`<Framework/Header.h>`, given a search path of `-F /Path/To`.
Headermaps will also be queried in reverse to find a spelled name to
include headers.
Differential Revision: https://reviews.llvm.org/D123831
CUDA/HIP needs to mangle for aux target. When mangling for aux target,
the mangler should use mangling number for aux target. Previously
in https://reviews.llvm.org/D122734 a state was introduced in
ASTContext to let the mangler get mangling number for aux target
from ASTContext. This patch removes that state from ASTConext
and add an IsAux member to MangleContext to indicate that
the mangle context is for aux target. This reflects the reality that
the mangle context is created for mangling aux target and makes
ASTContext cleaner.
Reviewed by: Artem Belevich, Reid Kleckner
Differential Revision: https://reviews.llvm.org/D124842
tapi & clang-extractapi both attempt to construct then check against
how a header was included to determine api information when working
against multiple search paths, headermap, and vfsoverlay mechanisms.
Validating this against what the preprocessor sees during lookup time
makes this check more reliable.
Reviewed By: zixuw, jansvoboda11
Differential Revision: https://reviews.llvm.org/D124638
`IgnoreParenImpCasts` will remove implicit casts to bool
(e.g. `PointerToBoolean`), such that the resulting expression may not
be of the `bool` type. The `cast_or_null<BoolValue>` in
`extendFlowCondition` will then trigger an assert, as the pointer
expression will not have a `BoolValue`.
Instead, we only skip `ExprWithCleanups` and `ParenExpr` nodes, as the
CFG does not emit them.
Differential Revision: https://reviews.llvm.org/D124807
C89 allowed a type specifier to be elided with the resulting type being
int, aka implicit int behavior. This feature was subsequently removed
in C99 without a deprecation period, so implementations continued to
support the feature. Now, as with implicit function declarations, is a
good time to reevaluate the need for this support.
This patch allows -Wimplicit-int to issue warnings in C89 mode (off by
default), defaults the warning to an error in C99 through C17, and
disables support for the feature entirely in C2x. It also removes a
warning about missing declaration specifiers that really was just an
implicit int warning in disguise and other minor related cleanups.
This patch adds support for the conditional (ternary) operator on SVE
scalable vector types in C++, matching the behaviour for NEON vector
types. Like the conditional operator for NEON types, this is disabled in
C mode.
Differential Revision: https://reviews.llvm.org/D124091
This reverts commit a97899108e.
The patch caused some problems with the libc++ `__range_adaptor_closure`
that I haven't been able to figure out the cause of, so I am reverting
while I figure out whether this is a solvable problem/issue with the
CFE, or libc++ depending on an older 'incorrect' behavior.
The Itanium C++ ABI says prefixes are substitutable. For most prefixes
we already handle this: the manglePrefix(const DeclContext *, bool) and
manglePrefix(QualType) overloads explicitly handles substitutions or
defer to functions that handle substitutions on their behalf. The
manglePrefix(NestedNameSpecifier *) overload, however, is different and
handles some cases implicitly, but not all. The Identifier case was not
handled; this change adds handling for it, as well as a test case.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D122663
This reverts commit 0c31da4838.
I've solved the issue with the PointerUnion by making the
`FunctionTemplateDecl` pointer be a NamedDecl, that could be a
`FunctionDecl` or `FunctionTemplateDecl` depending. This is enforced
with an assert.
D124741 added the generic "__builtin_reduce_add" which we can use to replace the x86 specific integer add reduction builtins - internally these were mapping to the same intrinsic already so there are no test changes required.
Differential Revision: https://reviews.llvm.org/D124757
This reverts commit 4b6c2cd647.
The patch caused numerous ARM 32 bit build failures, since we added a
5th item to the PointerUnion, and went over the 2-bits available in the
32 bit pointers.
As reported here: https://github.com/llvm/llvm-project/issues/44178
Concepts are not supposed to be instantiated until they are checked, so
this patch implements that and goes through significant amounts of work
to make sure we properly re-instantiate the concepts correctly.
Differential Revision: https://reviews.llvm.org/D119544
Similar to the existing bitwise reduction builtins, this lowers to a llvm.vector.reduce.add intrinsic call.
For other reductions, we've tried to share builtins for float/integer vectors, but the fadd reduction intrinsics also take a starting value argument and can either do unordered or serialized, but not reduction-trees as specified for the builtins. However we address fadd support this shouldn't affect the integer case.
(Split off from D117829)
Differential Revision: https://reviews.llvm.org/D124741
Enable efficient implementation of context-aware joining of distinct
boolean values. It can be used to join distinct boolean values while
preserving flow condition information.
Flow conditions are represented as Token <=> Clause iff formulas. To
perform context-aware joining, one can simply add the tokens of flow
conditions to the formula when joining distinct boolean values, e.g:
`makeOr(makeAnd(FC1, Val1), makeAnd(FC2, Val2))`. This significantly
simplifies the implementation of `Environment::join`.
This patch removes the `DataflowAnalysisContext::getSolver` method.
The `DataflowAnalysisContext::flowConditionImplies` method should be
used instead.
Reviewed-by: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D124395
In C++ and C2x, we would avoid calling ImplicitlyDefineFunction at all,
but in OpenCL mode we would still call the function and have it produce
an error diagnostic. Instead, we now have a helper function to
determine when implicit function definitions are allowed and we use
that to determine whether to call ImplicitlyDefineFunction so that the
behavior is more consistent across language modes.
This changes the diagnostic behavior from telling the users that an
implicit function declaration is not allowed in OpenCL to reporting use
of an unknown identifier and going through typo correction, as done in
C++ and C2x.
The DXIL validator version option(/validator-version) decide the validator version when compile hlsl.
The format is major.minor like 1.0.
In normal case, the value of validator version should be got from DXIL validator. Before we got DXIL validator ready for llvm/main, DXIL validator version option is added first to set validator version.
It will affect code generation for DXIL, so it is treated as a code gen option.
A new member std::string DxilValidatorVersion is added to clang::CodeGenOptions.
Then CGHLSLRuntime is added to clang::CodeGenModule.
It is used to translate clang::CodeGenOptions::DxilValidatorVersion into a ModuleFlag under key "dx.valver" at end of clang code generation.
Reviewed By: beanz
Differential Revision: https://reviews.llvm.org/D123884
If no capability is held, or the capability expression is invalid, there
is obviously no capability kind and so none would be reported.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124132
This should make us print the right capability kind in many more cases,
especially when attributes name multiple capabilities of different kinds.
Previously we were trying to deduce the capability kind from the
original attribute, but most attributes can name multiple capabilities,
which could be of different kinds. So instead we derive the kind when
translating the attribute expression, and then store it in the returned
CapabilityExpr. Then we can extract the corresponding capability name
when we need it, which saves us lots of plumbing and almost guarantees
that the name is right.
I didn't bother adding any tests for this because it's just a usability
improvement and it's pretty much evident from the code that we don't
fall back to "mutex" anymore (save for a few cases that I'll address in
a separate change).
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124131
We're storing these quite frequently: FactEntry inherits from
CapabilityExpr, and the FactManager has a vector of such entries.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124127
clang-tidy's behavior is to add the -W flags, and then map all clang diagnostics
to "clang-diagnostic-foo" pseudo-check-names, then use Checks to filter those.
Previous to this patch, we were handling -W flags but not filtering the
diagnostics, assuming both sets of information encoded the same thing.
However this intersection is nontrivial when diagnostic group hierarchy is
involved. e.g. -Wunused + clang-diagnostic-unused-function should not enable
unused label warnings.
This patch more closely emulates clang-tidy's behavior, while not going to
the extreme of generating tidy check names for all clang diagnostics and
filtering them with regexes.
Differential Revision: https://reviews.llvm.org/D124679
OpenMP recently moved to the new offloading driver, this had the effect
of making it more difficult to inspect intermediate code for the device.
This patch adds `-foffload-host-only` and `-foffload-device-only` to
control which sides get compiled. This will allow users to more easily
inspect output without needing the temp files.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D124220
This patch adds the basic support for the clang driver to compile and link CUDA
using the new offloading driver. This requires handling the CUDA offloading kind
and embedding the generated files into the host. This will allow us to link
OpenMP code with CUDA code in the linker wrapper. More support will be required
to create functional CUDA / HIP binaries using this method.
Depends on D120270 D120271 D120934
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D120272
In preparation for allowing other offloading kinds to use the new driver
a new opt-in flag `-foffload-new-driver` is added. This is distinct from
the existing `-fopenmp-new-driver` because OpenMP will soon use the new
driver by default while the others should not.
Reviewed By: yaxunl, tra
Differential Revision: https://reviews.llvm.org/D123325
In preparation for accepting other offloading kinds with the new driver,
this patch makes the way we handle offloading actions more generic. A
new field to get the associated device action's toolchain is used rather
than manually iterating a list. This makes building the arguments easier
and makes sure that we doin't rely on any implicit ordering.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D123313
Include-cleaner is a library that uses the clang AST and preprocessor to
determine which headers are used. It will be used in clang-tidy, in
clangd, in a standalone tool at least for testing, and in out-of-tree tools.
Roughly, it walks the AST, finds referenced decls, maps these to
used sourcelocations, then to FileEntrys, then matching these against #includes.
However there are many wrinkles: dealing with macros, standard library
symbols, umbrella headers, IWYU directives etc.
It is not built on the C++20 modules concept of usage, to allow:
- use with existing non-modules codebases
- a flexible API embeddable in clang-tidy, clangd, and other tools
- avoiding a chicken-and-egg problem where include cleanups are needed
before modules can be adopted
This library is based on existing functionality in clangd that provides
an unused-include warning. However it has design changes:
- it accommodates diagnosing missing includes too (this means tracking
where references come from, not just the set of targets)
- it more clearly separates the different mappings
(symbol => location => header => include) for better testing
- it handles special cases like standard library symbols and IWYU directives
more elegantly by adding unified Location and Header types instead of
side-tables
- it will support some customization of policy where necessary (e.g.
for style questions of what constitutes a use, or to allow
both missing-include and unused-include modes to be conservative)
This patch adds the basic directory structure under clang-tools-extra
and a skeleton version of the AST traversal, which will be the central
piece.
A more end-to-end prototype is in https://reviews.llvm.org/D122677
RFC: https://discourse.llvm.org/t/rfc-lifting-include-cleaner-missing-unused-include-detection-out-of-clangd/61228
Differential Revision: https://reviews.llvm.org/D124164
MSVC and Itanium mangling use different mangling numbers
for function-scope structs, which causes inconsistent
mangled kernel names in device and host compilations.
This patch uses Itanium mangling number for structs
in for mangling device side names in CUDA/HIP host
compilation on Windows to fix this issue.
A state is added to ASTContext to indicate whether the
current name mangling is for device side names in host
compilation. Device and host mangling number
are encoded/decoded as upper and lower half of 32 bit
unsigned integer to fit into the original mangling number
field for AST. Diagnostic will be emitted if a manglining
number exceeds limit.
Reviewed by: Artem Belevich, Reid Kleckner
Differential Revision: https://reviews.llvm.org/D122734
Fixes: SWDEV-328515
This is to improve maintenance a bit and remove need to maintain the additional option and related code-paths.
Differential Revision: https://reviews.llvm.org/D124558
A record may have more than just FieldDecls in it. If so, then we're
likely to drop them if we only randomize the FieldDecls.
We need to be careful about anonymous structs/unions. Their fields are
made available in the RecordDecl as IndirectFieldDecls, which are listed
after the anonymous struct/union. The ordering doesn't appear to be
super important, however we place them unrandomized at the end of the
RecordDecl just in case. There's also the possiblity of
StaticAssertDecls. We also want those at the end.
All other non-FieldDecls we place at the top, just in case we get
something like:
struct foo {
enum e { BORK };
enum e a;
};
Link: https://github.com/KSPP/linux/issues/185
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123958
HLSL doesn't support access specifiers. This change has two components:
1) Make default access for classes public
2) Diagnose the use of access specifiers as a clang HLSL extension
As long as the default behavior for access specifiers matches HLSL,
allowing them to be used doesn't cause sourece incompatability with
valid code. As such enabling them as a clang extension seems like a
reasonable approach.
Fixes#55124
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124487
This reverts commit b0bc93da92.
Changes: `s/_WIN32/_WIN64/g` in clang/test/SemaCXX/attr-trivial-abi.cpp.
The calling convention is specific to 64-bit windows. It's even in the name: `CCK_MicrosoftWin64`.
After this, the test passes with both `-triple i686-pc-win32` and `-triple x86_64-pc-win32`. Phew!
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D123059
This getLValue function was declared in 98db1f990f ([Analyzer] [NFC]
Parameter Regions, 2020-05-11) but was never implemented.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D124461
- Do not traverse concept decl inside `AutoType`. We only traverse
declaration and definitions, not references to a declaration.
- Do not visit implicit AST node the relevant traversal mode.
- Add traversal extension points for concept requirements.
- Renamed `TraverseConceptReference` to mark as helper to share
the code. Having an extension point there seems confusing given that
there are many concept refences in the AST that do not call the
helper. Those are `AutoType`, `AutoTypeLoc` and constraint requirements.
Only clangd code requires an update.
There are no use-cases for concept requirement traversals yet, but
I added them in the earlier version of the patch and decided to keep
them for completeness.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D124532
This reverts commit d46fa023ca.
Regressed include order in some cases with trailing comments, see the
comments on https://reviews.llvm.org/D121370. Will add a regression test
in a follow-up commit.
Emitting metadata for the same ivar multiple times can lead to
miscompilations. Objective-C runtime adds offsets to calculate ivar
position in memory and presence of duplicate offsets causes wrong final
position thus overwriting unrelated memory.
Such a situation is impossible with modules disabled as clang diagnoses
ivar redeclarations during sema checks after parsing
(`Sema::ActOnFields`). Fix the case with modules enabled by checking
during deserialization if ivar is already declared. We also support
a use case where the same category ends up in multiple modules. We
don't want to treat this case as ivar redeclaration and instead merge
corresponding ivars.
rdar://83468070
Differential Revision: https://reviews.llvm.org/D121177
Fix the misleading diag msg as the option is ignored for a particular
offload arch only.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D124396
Introduced by 23a5090c6, this style option marker indicated
'clang-format 9', though its respective option was available in
an earlier release.
Differential Revision: https://reviews.llvm.org/D123299
Add support for concepts and requires expression in the clang index.
Genarate USRs for concepts.
Also change how `RecursiveASTVisitor` handles return type requirement in
requires expressions. The new code unpacks the synthetic template parameter
list used for storing the actual expression. This simplifies
implementation of the indexing. No code seems to depend on the original
traversal anyway and the synthesized template parameter list is easily
accessible from inside the requires expression if needed.
Add tests in the clangd codebase.
Fixes https://github.com/clangd/clangd/issues/1103.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D124441
vslideup works by leaving elements 0<i<OFFSET undisturbed.
so it need the destination operand as input for correctness
regardless of policy. Add a operand to indicate policy.
We also add policy operand for unmaksed vslidedown to keep the interface consistent with vslideup
because vslidedown have only undisturbed at 0<i<vstart but user have no way to control of vstart.
Reviewed By: rogfer01, craig.topper
Differential Revision: https://reviews.llvm.org/D124186
This patch adds 2 missing items required for `flang-new` to be able to
generate executables:
1. The Fortran_main runtime library, which implements the main entry
point into Fortran's `PROGRAM` in Flang,
2. Extra linker flags to include Fortran runtime libraries (e.g.
Fortran_main).
Fortran_main is the bridge between object files generated by Flang and
the C runtime that takes care of program set-up at system-level. For
every Fortran `PROGRAM`, Flang generates the `_QQmain` function.
Fortran_main implements the C `main` function that simply calls
`_QQmain`.
Additionally, "<driver-path>/../lib" directory is added to the list of
search directories for libraries. This is where the required runtime
libraries are currently located. Note that this the case for the build
directory. We haven't considered installation directories/targets yet.
With this change, you can generate an executable that will print `hello,
world!` as follows:
```bash
$ cat hello.f95
PROGRAM HELLO
write(*, *) "hello, world!"
END PROGRAM HELLO
$ flang-new -flang-experimental-exec hello.f95
./a.out
hello, world!
```
NOTE 1: Fortran_main has to be a static library at all times. It invokes
`_QQmain`, which is the main entry point generated by Flang for the
given input file (you can check this with `flang-new -S hello.f95 -o - |
grep "Qmain"`). This means that Fortran_main has an unresolved
dependency at build time. The linker will allow this for a static
library. However, if Fortran_main was a shared object, then the linker
will produce an error: `undefined symbol: `_QQmain`.
NOTE 2: When Fortran runtime libraries are generated as shared libraries
(excluding Fortran_main, which is always static), you will need to
tell the dynamic linker (by e.g. tweaking LD_LIBRARY_PATH) where to look
for them when invoking the executables. For example:
```bash
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<flang-build-dir>/lib/ ./a.out
```
NOTE 3: This feature is considered experimental and currently guarded
with a flag: `-flang-experimental-exec`.
Differential Revision: https://reviews.llvm.org/D122008
[1] https://github.com/flang-compiler/f18-llvm-project
CREDITS: Fortran_main was originally written by Eric Schweitz, Jean
Perier, Peter Klausler and Steve Scalpone in the fir-dev` branch in [1].
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Peter Klausler <pklausler@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Steve Scalpone <sscalpone@nvidia.com
This change adds an option to detect all null dereferences for
non-default address spaces, except for address spaces 256, 257 and 258.
Those address spaces are special since null dereferences are not errors.
All address spaces can be considered (except for 256, 257, and 258) by
using -analyzer-config
core.NullDereference:DetectAllNullDereferences=true. This option is
false by default, retaining the original behavior.
A LIT test was enhanced to cover this case, and the rst documentation
was updated to describe this behavior.
Reviewed By: steakhal
Differential Revision: https://reviews.llvm.org/D122841
When doing overload resolution, we have to check that candidates' parameter types are equal before trying to find a better candidate through checking which candidate is more constrained.
This revision adds this missing check and makes us diagnose those cases as ambiguous calls when the types are not equal.
Fixes GitHub issue https://github.com/llvm/llvm-project/issues/53640
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D123182
A recent review emphasized the preference to use DefaultBool instead of
bool for checker options. This change is a NFC and cleans up some of the
instances where bool was used, and could be changed to DefaultBool.
Reviewed By: steakhal
Differential Revision: https://reviews.llvm.org/D123464
In case of OpenMP programs, thread local variables can be present in
any clause pertaining to OpenMP constructs, as we know that compiler
generates artificial functions and in some cases values are passed to
those artificial functions thru parameters. For an example, if thread
local variable is present in copyin clause (testcase attached with the
patch), parameter with same name is generated as parameter to artificial
function. When user inquires the thread Local variable, its debug info
is hidden by the parameter. User never gets the actual TLS variable
when inquires it, instead gets the artificial parameter.
Current patch suppresses the debug info for such artificial parameter to
enable correct debugging of TLS variables.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D123787
> Includes regression test for problem noted by @hans.
> is reverts commit 973de71.
>
> Differential Revision: https://reviews.llvm.org/D106898
Feature implemented as-is is fairly expensive and hasn't been used by
libc++. A potential reimplementation is possible if libc++ become
interested in this feature again.
Differential Revision: https://reviews.llvm.org/D123885
These command-line flags are alternates to providing the -x
c++-*-header indicators that we are building a header unit.
Act on fmodule-header= for headers on the c/l:
If we have x.hh -fmodule-header, then we should treat that header
as a header unit input (equivalent to -xc++-header-unit-header x.hh).
Likewise, for fmodule-header={user,system} the source should be now
recognised as a header unit input (since this can affect the job list
that we need).
It's not practical to recognise a header without any suffix so
-fmodule-header=system foo isn't going to happen. Although
-fmodule-header=system foo.hh will work OK. However we can make it
work if the user indicates that the item without a suffix is a valid
header. (so -fmodule-header=system -xc++-header vector)
Differential Revision: https://reviews.llvm.org/D121589
This patch extends cc1as to export the build version load command with
LC_VERSION_MIN_MACOSX.
This is especially important for Mac Catalyst as Mac Catalyst uses
the MacOS's compiler rt built-ins.
Differential Revision: https://reviews.llvm.org/D121868
This adds file types and handling for three input types, representing a C++20
header unit source:
1. When provided with a complete pathname for the header.
2. For a header to be looked up (by the frontend) in the user search paths
3. For a header to be looked up in the system search paths.
We also add a pre-processed file type (although that is a single type, regardless
of the original input type).
These types may be specified with -xc++-{user,system,header-unit}-header xxxx.
These types allow us to disambiguate header unit jobs from PCH ones, and thus
we handle these differently from other header jobs in two ways:
1. The job construction is altered to build a C++20 header unit (rather than a
PCH file, as would be the case for other headers).
2. When the type is "user" or "system" we defer checking for the file until the
front end is run, since we need to look up the header in the relevant paths
which are not known at this point.
Differential Revision: https://reviews.llvm.org/D121588
Tests that need ASTs have to deal with the awkward control flow of
FrontendAction in some way. There are a few idioms used:
- don't bother with unit tests, use clang -dump-ast
- create an ASTConsumer by hand, which is bulky
- use ASTMatchFinder - works pretty well if matchers are actually
needed, very strange if they are not
- use ASTUnit - this yields nice straight-line code, but ASTUnit is a
terrifically complicated library not designed for this purpose
TestAST provides a very simple way to write straight-line tests: specify
the code/flags and it provides an AST that is kept alive until the
object is destroyed.
It's loosely modeled after TestTU in clangd, which we've successfully
used for a variety of tests.
I've updated a couple of clang tests to use this helper, IMO they're clearer.
Differential Revision: https://reviews.llvm.org/D123668
- Remove fiddly union, preambles are heavyweight
- Remove fiddly move constructors in TempPCHFile and PCHStorage, use unique_ptr
- Remove unneccesary accessors on PCHStorage
- Remove trivial InMemoryStorage
- Move implementation details into cpp file
This is a prefactoring, followup change will change the in-memory PCHStorage to
avoid extra string copies while creating it.
Differential Revision: https://reviews.llvm.org/D124177
Shader attribute is for shader library identify entry functions.
Here's an example,
[shader("pixel")]
float ps_main() : SV_Target {
return 1;
}
When compile this shader to library target like -E lib_6_3, compiler needs to know ps_main is an entry function for pixel shader. Shader attribute is to offer the information.
A new attribute HLSLShader is added to support shader attribute. It has an EnumArgument which included all possible shader stages.
Reviewed By: aaron.ballman, MaskRay
Differential Revision: https://reviews.llvm.org/D123907
Now the implementation would accept following code:
```
//--- impl.cppm
module M:impl;
class A {};
//--- M.cppm
export module M;
import :impl;
//--- Use.cpp
import M;
void test() {
A a; // Expected error. A is not visible here.
}
```
which is clearly wrong. The root cause is the implementation of
`isInCurrentModule` would return true if the module is a partition! So
in the above example, although Use.cpp is not a module unit,
`isInCurrentModule ` would still return true when the compiler tries to
see if the owning module of `A` is the current module. I believe this is
an oversight. This patch tries to fix this problem.
Reviewed By: iains
Differential Revision: https://reviews.llvm.org/D123837
This is extended to all `std::` functions that take a reference to a
value and return a reference (or pointer) to that same value: `move`,
`forward`, `move_if_noexcept`, `as_const`, `addressof`, and the
libstdc++-specific function `__addressof`.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
This is a re-commit of
fc30901096,
a571f82a50,
64c045e25b, and
de6ddaeef3,
and reverts aa643f455a.
This change also includes a workaround for users using libc++ 3.1 and
earlier (!!), as apparently happens on AIX, where std::move sometimes
returns by value.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
Revert "Fixup D123950 to address revert of D123345"
This reverts commit aa643f455a.
Under the hood this prints the same as `QualType::getAsString()` but cuts out the middle-man when that string is sent to another raw_ostream.
Also cleaned up all the call sites where this occurs.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123926
This patch removes uses of the deprecated `DirectoryEntry::getName()` from the `ModuleMap::diagnoseHeaderInclusion()` function by using `{File,Directory}EntryRef` instead.
Reviewed By: bnbarham
Differential Revision: https://reviews.llvm.org/D123856