Otherwise we set it always to zero, which is not correct,
and we assert inside alignTo (Assertion failed:
Align != 0u && "Align can't be 0.").
Differential Revision: https://reviews.llvm.org/D26173
llvm-svn: 285841
These tests rely on two sections being allocated with a limited displacement
from one to the other to work. We've never guaranteed this, and consequently
these tests usually fail. That led to them being XFAILed, but now they XPASS
whenever the sections do happen to be allocated nearby in memory. So I'm
removing these for now to get rid of the noise. We can re-instate them if/when
we take the time to implement a displacement-respecting allocator.
llvm-svn: 284654
This patch causes RuntimeDyld to check for existing definitions when it
encounters weak symbols. If a definition already exists then the new weak
definition is discarded. All symbol lookups within a "logical dylib" should now
agree on the address of any given weak symbol. This allows the JIT to better
match the behavior of the static linker for C++ code.
This support is only partial, as it does not allow strong definitions that
occur after the first weak definition (in JIT symbol lookup order) to override
the previous weak definitions. Support for this will be added in a future
patch.
llvm-svn: 278065
Some of the JIT tests began failing with "[llvm] r266663 - [Orc] Re-commit
r266581 with fixes for MSVC, and format cleanups." on powerpc64 big endian.
To get the buildbots running I am marking these as UNSUPPORTED for now.
If this is fixed remove the UNSUPPORTED flag "powerpc64-unknown-linux-gnu".
In r267516 I marked these as XFAIL but they succeed on some of the bots
on stage1.
llvm-svn: 267518
Some of the JIT tests began failing with "[llvm] r266663 - [Orc] Re-commit
r266581 with fixes for MSVC, and format cleanups." on powerpc64 big endian.
To get the buildbots running I am marking these as XFAIL for now.
If this is fixed remove the XFAIL flag "powerpc64-unknown-linux-gnu".
llvm-svn: 267516
classes.
OrcRemoteTargetClient::RCMemoryManager will now register EH frames with the
server automatically. This allows remote-execution of code that uses exceptions.
llvm-svn: 257816
The new ORC remote-JITing support provides a superset of the old code's
functionality, so we can replace the old stuff. As a bonus, a couple of
previously XFAILed tests have started passing.
llvm-svn: 257343
These tests started passing after libcxxabi's r255559, which fixed a problem
relating to how libcxxabi links its EH library. The test failures were
caused by an issue with libc++, not the sanitizers (confirmed by building a
pre-r255559 revision with libc++/libc++abi and without sanitizers), so they
should never have been XFAILed under the sanitizers.
llvm-svn: 255708
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
Add support for resolving MIPS64r2 and MIPS64r6 relocations in MCJIT.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D9667
llvm-svn: 238424
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
Summary:
This is the first in a series of patches to eventually add support for TLS relocations to RuntimeDyld. This patch resolves an issue in the current GOT handling, where GOT entries would be reused between object files, which leads to the same situation that necessitates the GOT in the first place, i.e. that the 32-bit offset can not cover all of the address space. Thus this patch makes the GOT object-file-local.
Unfortunately, this still isn't quite enough, because the MemoryManager does not yet guarantee that sections are allocated sufficiently close to each other, even if they belong to the same object file. To address this concern, this patch also adds a small API abstraction on top of the GOT allocation mechanism that will allow (temporarily, until the MemoryManager is improved) using the stub mechanism instead of allocating a different section. The actual switch from separate section to stub mechanism will be part of a follow-on commit, so that it can be easily reverted independently at the appropriate time.
Test Plan: Includes a test case where the GOT of two object files is artificially forced to be apart by several GB.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8813
llvm-svn: 234839
These regression tests are supposed to test small code model support, but have
been XFAIL'd because we don't have an in-tree memory manager that can guarantee
a small-code-model compatible memory layout. Unfortunately, they can
occasionally pass if they get lucky with memory allocation, causing unexpected
passes on the bots. That's not very helpful.
I'm going to remove these until we have the infrastructure (small-code-model
compatible memory manager) to run them properly.
llvm-svn: 233722
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
On LP64 platforms, it will work or not depending on the choosen memory
layout, so neither PASS nor XFAIL is appropiate.
As UNSUPPORTED as per-test target doesn't exist (yet), remove the test
instead to unbreak the builds.
llvm-svn: 222767
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
This adds support for several missing PPC64 relocations in the
straight-forward manner to RuntimeDyldELF.cpp.
Note that this actually fixes a failure of a large-model test case on
PowerPC, allowing the XFAIL to be removed.
llvm-svn: 211382
After all hard work to implement the EHABI and with the test-suite
passing, it's time to turn it on by default and allow users to
disable it as a work-around while we fix the eventual bugs that show
up.
This commit also remove the -arm-enable-ehabi-descriptors, since we
want the tables to be printed every time the EHABI is turned on
for non-Darwin ARM targets.
Although MCJIT EHABI is not working yet (needs linking with the right
libraries), this commit also fixes some relocations on MCJIT regarding
the EH tables/lib calls, and update some tests to avoid using EH tables
when none are needed.
The EH tests in the test-suite that were previously disabled on ARM
now pass with these changes, so a follow-up commit on the test-suite
will re-enable them.
llvm-svn: 200388
After several refactorings on the MCJIT remote communication, things are
finally looking good on Clang-compiled LLVM regarding MCJIT remote tests,
so I'm re-enabling them to see how the self-hosting buildbot behaves over
a longer period.
llvm-svn: 200102
Disabling remote MCJIT tests on ARM again, as they're still failing when
self-hosting on ARM, despite all my tests. At least now we have more info
on what message it's breaking and what is going on. Investigating.
llvm-svn: 199310