Commit 9385aaa848 ("[sancov] Fix PR33732") added zeroext to
__sanitizer_cov_trace(_const)?_cmp[1248] parameters for x86_64 only,
however, it is useful on other targets, in particular, on SystemZ: it
fixes swap-cmp.test.
Therefore, use it on all targets. This is safe: if target ABI does not
require zero extension for a particular parameter, zeroext is simply
ignored. A similar change has been implemeted as part of commit
3bc439bdff ("[MSan] Add instrumentation for SystemZ"), and there were
no problems with it.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D85689
If a section is supposed to hold elements of type T, then the
corresponding CreateSecStartEnd()'s Ty parameter represents T*.
Forwarding it to GlobalVariable constructor causes the resulting
GlobalVariable's type to be T*, and its SSA value type to be T**, which
is one indirection too many. This issue is mostly masked by pointer
casts, however, the global variable still gets an incorrect alignment,
which causes SystemZ to choose wrong instructions to access the
section.
Since the NPM pass is named sancov-module, not sancov.
This makes all tests under Instrumentation/SanitizerCoverage pass when
-enable-new-pm is on by default.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D84687
Summary: `nomerge` attribute was added at D78659. So, we can remove the EmptyAsm workaround in ASan the MSan and use this attribute.
Reviewers: vitalybuka
Reviewed By: vitalybuka
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82322
Summary:
Following up on the comments on D77638.
Not undoing rGd6525eff5ebfa0ef1d6cd75cb9b40b1881e7a707 here at the moment, since I don't know how to test mac builds. Please let me know if I should include that here too.
Reviewers: vitalybuka
Reviewed By: vitalybuka
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77889
This is equivalent in terms of LLVM IR semantics, but we want to
transition away from using MaybeAlign to represent the alignment of
these instructions.
Differential Revision: https://reviews.llvm.org/D77984
Summary:
New SanitizerCoverage feature `inline-bool-flag` which inserts an
atomic store of `1` to a boolean (which is an 8bit integer in
practice) flag on every instrumented edge.
Implementation-wise it's very similar to `inline-8bit-counters`
features. So, much of wiring and test just follows the same pattern.
Reviewers: kcc, vitalybuka
Reviewed By: vitalybuka
Subscribers: llvm-commits, hiraditya, jfb, cfe-commits, #sanitizers
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D77244
This patch merges the sancov module and funciton passes into one module pass.
The reason for this is because we ran into an out of memory error when
attempting to run asan fuzzer on some protobufs (pc.cc files). I traced the OOM
error to the destructor of SanitizerCoverage where we only call
appendTo[Compiler]Used which calls appendToUsedList. I'm not sure where precisely
in appendToUsedList causes the OOM, but I am able to confirm that it's calling
this function *repeatedly* that causes the OOM. (I hacked sancov a bit such that
I can still create and destroy a new sancov on every function run, but only call
appendToUsedList after all functions in the module have finished. This passes, but
when I make it such that appendToUsedList is called on every sancov destruction,
we hit OOM.)
I don't think the OOM is from just adding to the SmallSet and SmallVector inside
appendToUsedList since in either case for a given module, they'll have the same
max size. I suspect that when the existing llvm.compiler.used global is erased,
the memory behind it isn't freed. I could be wrong on this though.
This patch works around the OOM issue by just calling appendToUsedList at the
end of every module run instead of function run. The same amount of constants
still get added to llvm.compiler.used, abd we make the pass usage and logic
simpler by not having any inter-pass dependencies.
Differential Revision: https://reviews.llvm.org/D66988
llvm-svn: 370971
changes were made to the patch since then.
--------
[NewPM] Port Sancov
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
llvm-svn: 367053
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
Differential Revision: https://reviews.llvm.org/D62888
llvm-svn: 365838
Fixes the main issue in PR41693
When both modes are used, two functions are created:
`sancov.module_ctor`, `sancov.module_ctor.$LastUnique`, where
$LastUnique is the current LastUnique counter that may be different in
another module.
`sancov.module_ctor.$LastUnique` belongs to the comdat group of the same
name (due to the non-null third field of the ctor in llvm.global_ctors).
COMDAT group section [ 9] `.group' [sancov.module_ctor] contains 6 sections:
[Index] Name
[ 10] .text.sancov.module_ctor
[ 11] .rela.text.sancov.module_ctor
[ 12] .text.sancov.module_ctor.6
[ 13] .rela.text.sancov.module_ctor.6
[ 23] .init_array.2
[ 24] .rela.init_array.2
# 2 problems:
# 1) If sancov.module_ctor in this module is discarded, this group
# has a relocation to a discarded section. ld.bfd and gold will
# error. (Another issue: it is silently accepted by lld)
# 2) The comdat group has an unstable name that may be different in
# another translation unit. Even if the linker allows the dangling relocation
# (with --noinhibit-exec), there will be many undesired .init_array entries
COMDAT group section [ 25] `.group' [sancov.module_ctor.6] contains 2 sections:
[Index] Name
[ 26] .init_array.2
[ 27] .rela.init_array.2
By using different module ctor names, the associated comdat group names
will also be different and thus stable across modules.
Reviewed By: morehouse, phosek
Differential Revision: https://reviews.llvm.org/D61510
llvm-svn: 360107
Just as as llvm IR supports explicitly specifying numeric value ids
for instructions, and emits them by default in textual output, now do
the same for blocks.
This is a slightly incompatible change in the textual IR format.
Previously, llvm would parse numeric labels as string names. E.g.
define void @f() {
br label %"55"
55:
ret void
}
defined a label *named* "55", even without needing to be quoted, while
the reference required quoting. Now, if you intend a block label which
looks like a value number to be a name, you must quote it in the
definition too (e.g. `"55":`).
Previously, llvm would print nameless blocks only as a comment, and
would omit it if there was no predecessor. This could cause confusion
for readers of the IR, just as unnamed instructions did prior to the
addition of "%5 = " syntax, back in 2008 (PR2480).
Now, it will always print a label for an unnamed block, with the
exception of the entry block. (IMO it may be better to print it for
the entry-block as well. However, that requires updating many more
tests.)
Thus, the following is supported, and is the canonical printing:
define i32 @f(i32, i32) {
%3 = add i32 %0, %1
br label %4
4:
ret i32 %3
}
New test cases covering this behavior are added, and other tests
updated as required.
Differential Revision: https://reviews.llvm.org/D58548
llvm-svn: 356789
This patch adds a new option to SplitAllCriticalEdges and uses it to avoid splitting critical edges when the destination basic block ends with unreachable. Otherwise if we split the critical edge, sanitizer coverage will instrument the new block that gets inserted for the split. But since this block itself shouldn't be reachable this is pointless. These basic blocks will stick around and generate assembly, but they don't end in sane control flow and might get placed at the end of the function. This makes it look like one function has code that flows into the next function.
This showed up while compiling the linux kernel with clang. The kernel has a tool called objtool that detected the code that appeared to flow from one function to the next. https://github.com/ClangBuiltLinux/linux/issues/351#issuecomment-461698884
Differential Revision: https://reviews.llvm.org/D57982
llvm-svn: 355947
Summary:
These sorts of blocks often contain calls to noreturn functions, like
longjmp, throw, or trap. If they don't end the program, they are
"interesting" from the perspective of sanitizer coverage, so we should
instrument them. This was discussed in https://reviews.llvm.org/D57982.
Reviewers: kcc, vitalybuka
Subscribers: llvm-commits, craig.topper, efriedma, morehouse, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58740
llvm-svn: 355152
Summary:
If the user declares or defines `__sancov_lowest_stack` with an
unexpected type, then `getOrInsertGlobal` inserts a bitcast and the
following cast fails:
```
Constant *SanCovLowestStackConstant =
M.getOrInsertGlobal(SanCovLowestStackName, IntptrTy);
SanCovLowestStack = cast<GlobalVariable>(SanCovLowestStackConstant);
```
This variable is a SanitizerCoverage implementation detail and the user
should generally never have a need to access it, so we emit an error
now.
rdar://problem/44143130
Reviewers: morehouse
Differential Revision: https://reviews.llvm.org/D57633
llvm-svn: 353100
Summary:
Make recoverfp intrinsic target-independent so that it can be implemented for AArch64, etc.
Refer D53541 for the context. Clang counterpart D56748.
Reviewers: rnk, efriedma
Reviewed By: rnk, efriedma
Subscribers: javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D56747
llvm-svn: 351281
Summary:
Comdat groups override weak symbol behavior, allowing the linker to keep
the comdats for weak symbols in favor of comdats for strong symbols.
Fixes the issue described in:
https://bugs.chromium.org/p/chromium/issues/detail?id=918662
Reviewers: eugenis, pcc, rnk
Reviewed By: pcc, rnk
Subscribers: smeenai, rnk, bd1976llvm, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D56516
llvm-svn: 351247
Summary:
Use appendToUsed instead of include to ensure that
SanitizerCoverage's constructors are not stripped.
Also, use isOSBinFormatCOFF() to determine if target
binary format is COFF.
Reviewers: pcc
Reviewed By: pcc
Subscribers: hiraditya
Differential Revision: https://reviews.llvm.org/D56369
llvm-svn: 351118
Summary:
Place global arrays in comdat sections with their associated functions.
This makes sure they are stripped along with the functions they
reference, even on the BFD linker.
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51902
llvm-svn: 342186
Summary:
Place global arrays in comdat sections with their associated functions.
This makes sure they are stripped along with the functions they
reference, even on the BFD linker.
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51902
llvm-svn: 341987
Summary:
Place global arrays in comdat sections with their associated functions.
This makes sure they are stripped along with the functions they
reference, even on the BFD linker.
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51902
llvm-svn: 341951
Summary:
Port libFuzzer to windows-msvc.
This patch allows libFuzzer targets to be built and run on Windows, using -fsanitize=fuzzer and/or fsanitize=fuzzer-no-link. It allows these forms of coverage instrumentation to work on Windows as well.
It does not fix all issues, such as those with -fsanitize-coverage=stack-depth, which is not usable on Windows as of this patch.
It also does not fix any libFuzzer integration tests. Nearly all of them fail to compile, fixing them will come in a later patch, so libFuzzer tests are disabled on Windows until them.
Patch By: metzman
Reviewers: morehouse, rnk
Reviewed By: morehouse, rnk
Subscribers: #sanitizers, delcypher, morehouse, kcc, eraman
Differential Revision: https://reviews.llvm.org/D51022
llvm-svn: 341082
Summary:
Port libFuzzer to windows-msvc.
This patch allows libFuzzer targets to be built and run on Windows, using -fsanitize=fuzzer and/or fsanitize=fuzzer-no-link. It allows these forms of coverage instrumentation to work on Windows as well.
It does not fix all issues, such as those with -fsanitize-coverage=stack-depth, which is not usable on Windows as of this patch.
It also does not fix any libFuzzer integration tests. Nearly all of them fail to compile, fixing them will come in a later patch, so libFuzzer tests are disabled on Windows until them.
Reviewers: morehouse, rnk
Reviewed By: morehouse, rnk
Subscribers: #sanitizers, delcypher, morehouse, kcc, eraman
Differential Revision: https://reviews.llvm.org/D51022
llvm-svn: 340949
Summary:
Port libFuzzer to windows-msvc.
This patch allows libFuzzer targets to be built and run on Windows, using -fsanitize=fuzzer and/or fsanitize=fuzzer-no-link. It allows these forms of coverage instrumentation to work on Windows as well.
It does not fix all issues, such as those with -fsanitize-coverage=stack-depth, which is not usable on Windows as of this patch.
It also does not fix any libFuzzer integration tests. Nearly all of them fail to compile, fixing them will come in a later patch, so libFuzzer tests are disabled on Windows until them.
Patch By: metzman
Reviewers: morehouse, rnk
Reviewed By: morehouse, rnk
Subscribers: morehouse, kcc, eraman
Differential Revision: https://reviews.llvm.org/D51022
llvm-svn: 340860
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Summary:
Use the initialexec TLS type and eliminate calls to the TLS
wrapper. Fixes the sanitizer-x86_64-linux-fuzzer bot failure.
Reviewers: vitalybuka, kcc
Reviewed By: kcc
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37026
llvm-svn: 311490
Summary:
Augment SanitizerCoverage to insert maximum stack depth tracing for
use by libFuzzer. The new instrumentation is enabled by the flag
-fsanitize-coverage=stack-depth and is compatible with the existing
trace-pc-guard coverage. The user must also declare the following
global variable in their code:
thread_local uintptr_t __sancov_lowest_stack
https://bugs.llvm.org/show_bug.cgi?id=33857
Reviewers: vitalybuka, kcc
Reviewed By: vitalybuka
Subscribers: kubamracek, hiraditya, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D36839
llvm-svn: 311186
This implementation of SanitizerCoverage instrumentation inserts different
callbacks depending on constantness of operands:
1. If both operands are non-const, then a usual
__sanitizer_cov_trace_cmp[1248] call is inserted.
2. If exactly one operand is const, then a
__sanitizer_cov_trace_const_cmp[1248] call is inserted. The first
argument of the call is always the constant one.
3. If both operands are const, then no callback is inserted.
This separation comes useful in fuzzing when tasks like "find one operand
of the comparison in input arguments and replace it with the other one"
have to be done. The new instrumentation allows us to not waste time on
searching the constant operands in the input.
Patch by Victor Chibotaru.
llvm-svn: 310600