It fits better with LLVM's memory model to try to do this in the
backend. Specifically, narrowing wide loads in the backends should be
relatively straightforward and is generally valuable, whereas widening
loads tends to be very constrained.
Discussion here:
http://lists.cs.uiuc.edu/pipermail/cfe-commits/Week-of-Mon-20140811/112581.html
This reverts commit r215614.
llvm-svn: 215648
Currently when laying out bitfields that don't need any padding, we
represent them as a wide enough int to contain all of the bits. This
can be hard on the backend since we'll do things like represent stores
to a few bits as loading an i144, masking it with a large constant,
and storing it back.
This turns up in less pathological cases where we load and mask 64 bit
word on a 32 bit platform when we actually only need to access 32 bits.
This leads to bad code being generated in most of our 32 bit backends.
In practice, there are often natural breaks in bitfields, and it's a
fairly simple and effective heuristic to split these fields into legal
integer sized chunks when it will be equivalent (ie, it won't force us
to add any extra padding).
llvm-svn: 215614
recursively within the emission of another inline function. This ultimately
led to us emitting the same inline function definition twice, which we then
rejected because we believed we had a mangled name conflict.
llvm-svn: 215579
Summary:
This patch adds a runtime check verifying that functions
annotated with "returns_nonnull" attribute do in fact return nonnull pointers.
It is based on suggestion by Jakub Jelinek:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20140623/223693.html.
Test Plan: regression test suite
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4849
llvm-svn: 215485
It cannot be compiled on Visual Studio 2012.
clang\include\clang/Frontend/CompilerInstance.h(153):
error C2248: 'std::unique_ptr<_Ty>::unique_ptr' : cannot access private member declared in class 'std::unique_ptr<_Ty>'
with
[
_Ty=llvm::raw_ostream
]
D:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\include\memory(1447) : see declaration of 'std::unique_ptr<_Ty>::unique_ptr'
with
[
_Ty=llvm::raw_ostream
]
This diagnostic occurred in the compiler generated function 'clang::CompilerInstance::OutputFile::OutputFile(const clang::CompilerInstance::OutputFile &)'
llvm-svn: 215346
After post-commit review and community discussion, this seems like a
reasonable direction to continue, making ownership semantics explicit in
the source using the type system.
llvm-svn: 215323
Due to the possible presence of return-by-out parameters, using the LLVM
argument number count when numbering debug info arguments can end up
off-by-one. This could produce two arguments with the same number, which
would in turn cause LLVM to emit only one of those arguments (whichever
it found last) or assert (r215157).
llvm-svn: 215227
MSVC doesn't decide what the inheritance model for a returned member
pointer *until* a call expression returns it.
This fixes PR20017.
llvm-svn: 215164
There are no vtable offset offsets in the MS ABI, but vbtable offsets
are analogous. There are no consumers of this information yet, but at
least we don't crash now.
llvm-svn: 215149
This reverts commit r215137.
This doesn't work at all, an offset-offset is probably different than an
offset. I'm scared that this passed our normal test suite.
llvm-svn: 215141
to instruct the code generator to not enforce a higher alignment
than the given number (of bytes) when accessing memory via an opaque
pointer or reference. Patch reviewed by John McCall (with post-commit
review pending). rdar://16254558
llvm-svn: 214911
This patch adds the '-fcoverage-mapping' option which
allows clang to generate the coverage mapping information
that can be used to provide code coverage analysis using
the execution counts obtained from the instrumentation
based profiling (-fprofile-instr-generate).
llvm-svn: 214752
Instead of creating global variables for source locations and global names,
just create metadata nodes and strings. They will be transformed into actual
globals in the instrumentation pass (if necessary). This approach is more
flexible:
1) we don't have to ensure that our custom globals survive all the optimizations
2) if globals are discarded for some reason, we will simply ignore metadata for them
and won't have to erase corresponding globals
3) metadata for source locations can be reused for other purposes: e.g. we may
attach source location metadata to alloca instructions and provide better descriptions
for stack variables in ASan error reports.
No functionality change.
llvm-svn: 214604
We've added support for a multiple functions with the same name in
LLVM's profile data, so the lookup returning the function hash it
found doesn't make sense anymore. Update to pass in the hash we
expect.
This also adds a test that the version 1 format is still readable,
since the new API is expected to handle that.
llvm-svn: 214586
It is responsible for generating metadata consumed by sanitizer instrumentation
passes in the backend. Move several methods from CodeGenModule to SanitizerMetadata.
For now the class is stateless, but soon it won't be the case.
Instead of creating globals providing source-level information to ASan, we will create
metadata nodes/strings which will be turned into actual global variables in the
backend (if needed).
No functionality change.
llvm-svn: 214564
It appears that the backend does not handle all cases that were handled by clang.
In particular, it does not handle structs as used in
SingleSource/UnitTests/2003-05-07-VarArgs.
llvm-svn: 214512
Summary:
This patch causes clang to emit va_arg instructions to the backend instead of
expanding them into an implementation itself. The backend already implements
va_arg since this is necessary for NaCl so this patch is removing redundant
code.
Together with the llvm patch (D4556) that accounts for the effect of endianness
on the expansion of va_arg, this fixes PR19612.
Depends on D4556
Reviewers: sstankovic, dsanders
Reviewed By: dsanders
Subscribers: rnk, cfe-commits
Differential Revision: http://reviews.llvm.org/D4742
llvm-svn: 214497
they're somehow missing a body. Looks like this was left behind when the loop
was generalized, and it's not been problematic before because without modules,
a used, implicit special member function declaration must be a definition.
This was resulting in us trying to emit a constructor declaration rather than
a definition, and producing a constructor missing its member initializers.
llvm-svn: 214473
This patch is necessary to support constant expressions which replaces the integer value in the loop hint attribute with an expression. The integer value was also storing the pragma’s state for options like vectorize(enable/disable) and the pragma unroll and nounroll directive. The state variable is introduced to hold the state of those options/pragmas. This moves the validation of the state (keywords) from SemaStmtAttr handler to the loop hint annotation token handler.
Resubmit with changes to try to fix the build-bot issue.
Reviewed by Aaron Ballman
llvm-svn: 214432
or a class derived from T. We already supported this when initializing
_Atomic(T) from T for most (and maybe all) other reasonable values of T.
llvm-svn: 214390
This patch is necessary to support constant expressions which replaces the integer value in the loop hint attribute with an expression. The integer value was also storing the pragma’s state for options like vectorize(enable/disable) and the pragma unroll and nounroll directive. The state variable is introduced to hold the state of those options/pragmas. This moves the validation of the state (keywords) from SemaStmtAttr handler to the loop hint annotation token handler.
Reviewed by Aaron Ballman
llvm-svn: 214333
As defined in the SPIR 1.2 specification, this node behaves similarly to
kernel_arg_type but will print the underlying type name, e.g., without
typedefs.
Example:
typedef unsigned int myunsignedint;
would report:
'myunsignedint' in the kernel_arg_type node
'uint' in the kernel_arg_base_type node
llvm-svn: 214308
This fixes a bug where kernel_arg_type was always changing 'unsigned ' to 'u'
for any parameter type, including non-canonical types.
Example:
typedef unsigned int myunsignedint;
would report:
"myunt"
llvm-svn: 214305
The MS ABI has a notion of 'required alignment' for fields; this
alignment supercedes pragma pack directives.
MSVC takes into account alignment attributes on typedefs when
determining whether or not a field has a certain required alignment.
Do the same in clang by tracking whether or not we saw such an attribute
when calculating the type's bitwidth and alignment.
This fixes PR20418.
Reviewers: rnk
Differential Revision: http://reviews.llvm.org/D4714
llvm-svn: 214274
Merge vrshr_n_v and vqshlu_n_v with ARM.
Remove FIXME comments for others as they can't actually be shared.
NFC.
Differential Revision: http://reviews.llvm.org/D4697
llvm-svn: 214173
This broke the following gdb tests:
gdb.base__annota1.exp
gdb.base__consecutive.exp
gdb.python__py-symtab.exp
gdb.reverse__consecutive-precsave.exp
gdb.reverse__consecutive-reverse.exp
I will look into this.
This reverts commit 214162.
llvm-svn: 214163
This allows us to give more precise diagnostics.
Diego kindly tested the impact on debug info size: "The increase on average
debug sizes is 0.1%. The total file size increase is ~0%."
llvm-svn: 214162
This isn't nearly as elaborate as the GCC inline asm which emits an
array of source locations, but it's very, very hard to trigger backend
diagnostics in MS inline asm because we parse it up front with good
source information, unlike GCC inline asm.
Currently I can trigger a "inline assembly requires more registers than
available" diagnostic with this code:
void foo();
void bar() {
__asm pusha
__asm call foo
__asm popa
}
However, if I committed that as a test case, I would have to remove it
once I fix PR20052.
llvm-svn: 214141
While Clang now supports both ELFv1 and ELFv2 ABIs, their use is currently
hard-coded via the target triple: powerpc64-linux is always ELFv1, while
powerpc64le-linux is always ELFv2.
These are of course the most common scenarios, but in principle it is
possible to support the ELFv2 ABI on big-endian or the ELFv1 ABI on
little-endian systems (and GCC does support that), and there are some
special use cases for that (e.g. certain Linux kernel versions could
only be built using ELFv1 on LE).
This patch implements the Clang side of supporting this, based on the
LLVM commit 214072. The command line options -mabi=elfv1 or -mabi=elfv2
select the desired ABI if present. (If not, Clang uses the same default
rules as now.)
Specifically, the patch implements the following changes based on the
presence of the -mabi= option:
In the driver:
- Pass the appropiate -target-abi flag to the back-end
- Select the correct dynamic loader version (/lib64/ld64.so.[12])
In the preprocessor:
- Define _CALL_ELF to the appropriate value (1 or 2)
In the compiler back-end:
- Select the correct ABI in TargetInfo.cpp
- Select the desired ABI for LLVM via feature (elfv1/elfv2)
llvm-svn: 214074
This moves some memptr specific code into the generic thunk emission
codepath.
Fixes PR20053.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D4613
llvm-svn: 214004
llvm revision 210639 renamed the -global-merge backend option to
-enable-global-merge. This change simply updates clang to match that.
Patch by Steven Wu!
llvm-svn: 213993
Previously we were building up the inalloca struct in the usual pattern
of return type followed by arguments. However, on Windows, 'this'
always precedes the 'sret' parameter, so we need to insert it into the
struct first as a special case.
llvm-svn: 213990
The target method of the thunk will perform the cleanup. This can't be
tested in 32-bit x86 yet because passing something by value would create
an inalloca, and we refuse to generate broken code for that.
llvm-svn: 213976
While -fno-rtti-data would correctly avoid referencing the RTTI complete
object locator in the VFTable itself, it would emit them anyway.
llvm-svn: 213841
The main subtlety here is that the Darwin tools still need to be given "-arch
arm64" rather than "-arch aarch64". Fortunately this already goes via a custom
function to handle weird edge-cases in other architectures, and it tested.
I removed a few arm64_be tests because that really isn't an interesting thing
to worry about. No-one using big-endian is also referring to the target as
arm64 (at least as far as toolchains go). Mostly they date from when arm64 was
a separate target and we *did* need a parallel name simply to test it at all.
Now aarch64_be is sufficient.
llvm-svn: 213744
Summary:
This pragma is very rare. We could *hypothetically* lower some uses of
it down to @llvm.global_ctors, but given that GlobalOpt isn't able to
optimize prioritized global ctors today, there's really no point.
If we wanted to do this in the future, I would check if the section used
in the pragma started with ".CRT$XC" and had up to two characters after
it. Those two characters could form the 16-bit initialization priority
that we support in @llvm.global_ctors. We would have to teach LLVM to
lower prioritized global ctors on COFF as well.
This should let us compile some silly uses of this pragma in WebKit /
Blink.
Reviewers: rsmith, majnemer
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4549
llvm-svn: 213593
In addition to enabling ELFv2 homogeneous aggregate handling,
LLVM support to pass array types directly also enables a performance
enhancement. We can now pass (non-homogeneous) aggregates that fit
fully in registers as direct integer arrays, using an element type
to encode the alignment requirement (that would otherwise go to the
"byval align" field).
This is preferable since "byval" forces the back-end to write the
aggregate out to the stack, even if it could be passed fully in
registers. This is particularly annoying on ELFv2, if there is
no parameter save area available, since we then need to allocate
space on the callee's stack just to hold those aggregates.
Note that to implement this optimization, this patch does not attempt
to fully anticipate register allocation rules as (defined in the
ABI and) implemented in the back-end. Instead, the patch is simply
passing *any* aggregate passed by value using the array mechanism
if its size is up to 64 bytes. This means that some of those will
end up being passed in stack slots anyway, but the generated code
shouldn't be any worse either. (*Large* aggregates remain passed
using "byval" to enable optimized copying via memcpy etc.)
llvm-svn: 213495
This patch implements clang support for the PowerPC ELFv2 ABI.
Together with a series of companion patches in LLVM, this makes
clang/LLVM fully usable on powerpc64le-linux.
Most of the ELFv2 ABI changes are fully implemented on the LLVM side.
On the clang side, we only need to implement some changes in how
aggregate types are passed by value. Specifically, we need to:
- pass (and return) "homogeneous" floating-point or vector aggregates in
FPRs and VRs (this is similar to the ARM homogeneous aggregate ABI)
- return aggregates of up to 16 bytes in one or two GPRs
The second piece is trivial to implement in any case. To implement
the first piece, this patch makes use of infrastructure recently
enabled in the LLVM PowerPC back-end to support passing array types
directly, where the array element type encodes properties needed to
handle homogeneous aggregates correctly.
Specifically, the array element type encodes:
- whether the parameter should be passed in FPRs, VRs, or just
GPRs/stack slots (for float / vector / integer element types,
respectively)
- what the alignment requirements of the parameter are when passed in
GPRs/stack slots (8 for float / 16 for vector / the element type
size for integer element types) -- this corresponds to the
"byval align" field
With this support in place, the clang part simply needs to *detect*
whether an aggregate type implements a float / vector homogeneous
aggregate as defined by the ELFv2 ABI, and if so, pass/return it
as array type using the appropriate float / vector element type.
llvm-svn: 213494
In C99, an array parameter declarator might have the form:
direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
where the static keyword indicates that the caller will always provide a
pointer to the beginning of an array with at least the number of elements
specified by the assignment expression. For constant sizes, we can use the
new dereferenceable attribute to pass this information to the optimizer. For
VLAs, we don't know the size, but (for addrspace(0)) do know that the pointer
must be nonnull (and so we can use the nonnull attribute).
llvm-svn: 213444
Thoroughly check for a pointer dereference which yields a glvalue. Look
through casts, comma operators, conditional operators, paren
expressions, etc.
This was originally D4416.
Differential Revision: http://reviews.llvm.org/D4592
llvm-svn: 213434
This reverts commit r213401, r213402, r213403, and r213404.
I accidently committed these changes instead of updating the
differential.
llvm-svn: 213405
Summary:
Thoroughly check for a pointer dereference which yields a glvalue. Look
through casts, comma operators, conditional operators, paren
expressions, etc.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4416
llvm-svn: 213401
Clang uses a diagnostic handler to grab diagnostic messages so it can print them
with the line of source code they refer to. This patch extends this to handle
optimization failures that were added to llvm to produce a warning when
loop vectorization is explicitly specified (using a pragma clang loop directive)
but fails.
Update renames warning flag name to avoid indicating the flag's severity and
adds a test.
Reviewed by Alp Toker
llvm-svn: 213400
Otherwise -fsanitize=vptr causes the program to crash when it downcasts
a null pointer.
Reviewed in http://reviews.llvm.org/D4412.
Patch by Byoungyoung Lee!
llvm-svn: 213393
Summary:
This change adds description of globals created by UBSan
instrumentation (UBSan handlers, type descriptors, filenames) to
llvm.asan.globals metadata, effectively "blacklisting" them. This can
dramatically decrease the data section in binaries built with UBSan+ASan,
as UBSan tends to create a lot of handlers, and ASan instrumentation
increases the global size to at least 64 bytes.
Test Plan: clang regression test suite
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits, byoungyoung, kcc
Differential Revision: http://reviews.llvm.org/D4575
llvm-svn: 213392
Because references must be initialized using some evaluated expression, they
must point to something, and a callee can assume the reference parameter is
dereferenceable. Taking advantage of a new attribute just added to LLVM, mark
them as such.
Because dereferenceability in addrspace(0) implies nonnull in the backend, we
don't need both attributes. However, we need to know the size of the object to
use the dereferenceable attribute, so for incomplete types we still emit only
nonnull.
llvm-svn: 213386
r211898 introduced a regression where a large struct, which would
normally be passed ByVal, was causing padding to be inserted to
prevent the backend from using some GPRs, in order to follow the
AAPCS. However, the type of the argument was not being set correctly,
so the backend cannot align 8-byte aligned struct types on the stack.
The fix is to not insert the padding arguments when the argument is
being passed ByVal.
llvm-svn: 213359
This reverts commit r213307.
Reverting to have some on-list discussion/confirmation about the ongoing
direction of smart pointer usage in the LLVM project.
llvm-svn: 213325
(after fixing a bug in MultiplexConsumer I noticed the ownership of the
nested consumers was implemented with raw pointers - so this fixes
that... and follows the source back to its origin pushing unique_ptr
ownership up through there too)
llvm-svn: 213307
This makes us emit dllexported in-class initialized static data members (which
are treated as definitions in MSVC), even when they're not referenced.
It also makes their special linkage reflected in the GVA linkage instead of
getting massaged in CodeGen.
Differential Revision: http://reviews.llvm.org/D4563
llvm-svn: 213304
This is used to mark the instructions emitted by Clang to implement
variety of UBSan checks. Generally, we don't want to instrument these
instructions with another sanitizers (like ASan).
Reviewed in http://reviews.llvm.org/D4544
llvm-svn: 213291
-- a constructor list initialization that unpacked an initializer list into
constructor arguments and
-- a list initialization that created as std::initializer_list and passed it
as the first argument to a constructor
in the AST. Use this flag while instantiating templates to provide the right
semantics for the resulting initialization.
llvm-svn: 213224
Clang supports __assume, at least at the semantic level, when MS extensions are
enabled. Unfortunately, trying to actually compile code using __assume would
result in this error:
error: cannot compile this builtin function yet
__assume is an optimizer hint, and can be ignored at the IR level. Until LLVM
supports assumptions at the IR level, a noop lowering is valid, and that is
what is done here.
llvm-svn: 213206
to be applied to class or protocols. This will direct IRGen
for Objective-C metadata to use the new name in various places
where class and protocol names are needed.
rdar:// 17631257
llvm-svn: 213167
Clang uses a diagnostic handler to grab diagnostic messages so it can print them
with the line of source code they refer to. This patch extends this to handle
diagnostic warnings that were added to llvm to produce a warning when
loop vectorization is explicitly specified (using a pragma clang loop directive)
but fails.
Reviewed by: Aaron Ballman
llvm-svn: 213112
This patch implements __builtin_arm_nop intrinsic for AArch32 and AArch64,
which generates hint 0x0, the alias of NOP instruction.
This intrinsic is necessary to implement ACLE __nop intrinsic.
Differential Revision: http://reviews.llvm.org/D4495
llvm-svn: 212947
Previously, we would have a private backing variable and an internal
alias pointing at it.
However, -fdata-sections only fires if a global variable has non-private
linkage. This means that an unreferenced vftable wouldn't get
discarded, bloating the object file.
Instead, stick the backing variable in a comdat even if the alias has
internal linkage. This will allow the linker to drop the vftable if it
is unused.
llvm-svn: 212901
Currently ASan instrumentation pass creates a string with global name
for each instrumented global (to include global names in the error report). Global
name is already mangled at this point, and we may not be able to demangle it
at runtime (e.g. there is no __cxa_demangle on Android).
Instead, create a string with fully qualified global name in Clang, and pass it
to ASan instrumentation pass in llvm.asan.globals metadata. If there is no metadata
for some global, ASan will use the original algorithm.
This fixes https://code.google.com/p/address-sanitizer/issues/detail?id=264.
llvm-svn: 212872
OS X TLS has all accesses going through the thread-wrapper function and
gives the backing thread-local variable internal linkage. This means
that thread-wrappers must have WeakAnyLinkage so that references to the
internal thread-local variables do not get propagated to other code.
It also means that translation units which do not provide a definition
for the thread-local variable cannot attempt to emit a thread-wrapper
because the thread wrapper will attempt to reference the backing
variable.
Differential Revision: http://reviews.llvm.org/D4109
llvm-svn: 212841
We now have an LLVM-level nonnull attribute that can be applied to function
parameters, and we emit it for reference types (as of r209723), but did not
emit it when an __attribute__((nonnull)) was provided. Now we will.
llvm-svn: 212835
Teach UBSan vptr checker to ignore technically invalud down-casts on
blacklisted types.
Based on http://reviews.llvm.org/D4407 by Byoungyoung Lee!
llvm-svn: 212770
Originally committed in r211722, this fixed one case of dtor calls being
emitted without locations (this causes problems for debug info if the
call is then inlined), this caught only some of the cases.
Instead of trying to re-enable the location before the cleanup, simply
re-enable the location immediately after the unconditional branches in
question using a scoped device to ensure the no-location state doesn't
leak out arbitrarily.
llvm-svn: 212761
This patch adds support for respecting the ABI and type alignment
of aggregates passed by value. Currently, all aggregates are aligned
at 8 bytes in the parameter save area. This is incorrect for two
reasons:
- Aggregates that need alignment of 16 bytes or more should be aligned
at 16 bytes in the parameter save area. This is implemented by
using an appropriate "byval align" attribute in the IR.
- Aggregates that need alignment beyond 16 bytes need to be dynamically
realigned by the caller. This is implemented by setting the Realign
flag of the ABIArgInfo::getIndirect call.
In addition, when expanding a va_arg call accessing a type that is
aligned at 16 bytes in the argument save area (either one of the
aggregate types as above, or a vector type which is already aligned
at 16 bytes), code needs to align the va_list pointer accordingly.
Reviewed by Hal Finkel.
llvm-svn: 212743
This patch adds support for passing arguments of non-Altivec vector type
(i.e. defined via attribute ((vector_size (...)))) on powerpc64-linux.
While such types are not mentioned in the formal ABI document, this
patch implements a calling convention compatible with GCC:
- Vectors of size < 16 bytes are passed in a GPR
- Vectors of size > 16 bytes are passed via reference
Note that vector types with a number of elements that is not a power
of 2 are not supported by GCC, so there is no pre-existing ABI to
follow. We choose to pass those (of size < 16) as if widened to the
next power of two, so they might end up in a vector register or
in a GPR. (Sizes > 16 are always passed via reference as well.)
Reviewed by Hal Finkel.
llvm-svn: 212734
The sret paramater consumes the register after the implicit 'this'
parameter, as with other calling conventions.
Fixes PR20278, which turned out to be very easy.
llvm-svn: 212669
Turn llvm::SpecialCaseList into a simple class that parses text files in
a specified format and knows nothing about LLVM IR. Move this class into
LLVMSupport library. Implement two users of this class:
* DFSanABIList in DFSan instrumentation pass.
* SanitizerBlacklist in Clang CodeGen library.
The latter will be modified to use actual source-level information from frontend
(source file names) instead of unstable LLVM IR things (LLVM Module identifier).
Remove dependency edge from ClangCodeGen/ClangDriver to LLVMTransformUtils.
No functionality change.
llvm-svn: 212643
r184166 added an X86_32 function in the middle of the SystemZ code.
The SystemZ port had been added only a couple of weeks earlier and
the original patch probably predated that.
No behavioral change intended.
llvm-svn: 212524
Of course, such code is horribly broken and will explode on impact.
That said, ATL does it, and we have to support them, at least a little
bit.
Fixes PR20191.
llvm-svn: 212508
All blacklisting logic is now moved to the frontend (Clang).
If a function (or source file it is in) is blacklisted, it doesn't
get sanitize_address attribute and is therefore not instrumented.
If a global variable (or source file it is in) is blacklisted, it is
reported to be blacklisted by the entry in llvm.asan.globals metadata,
and is not modified by the instrumentation.
The latter may lead to certain false positives - not all the globals
created by Clang are described in llvm.asan.globals metadata (e.g,
RTTI descriptors are not), so we may start reporting errors on them
even if "module" they appear in is blacklisted. We assume it's fine
to take such risk:
1) errors on these globals are rare and usually indicate wild memory access
2) we can lazily add descriptors for these globals into llvm.asan.globals
lazily.
llvm-svn: 212505
Now CodeGenFunction is responsible for looking at sanitizer blacklist
(in CodeGenFunction::StartFunction) and turning off instrumentation,
if necessary.
No functionality change.
llvm-svn: 212501
Get rid of cached CodeGenModule::SanOpts, which was used to turn off
sanitizer codegen options if current LLVM Module is blacklisted, and use
plain LangOpts.Sanitize instead.
1) Some codegen decisions (turning TBAA or writable strings on/off)
shouldn't depend on the contents of blacklist.
2) llvm.asan.globals should *always* be created, even if the module
is blacklisted - soon Clang's CodeGen where we read sanitizer
blacklist files, so we should properly report which globals are
blacklisted to the backend.
llvm-svn: 212499
I misidentified the problem and did not test suffifiently. The files had
correctly been removed, but for some reason they still remained in my git
checkout. Not adding the files back to CMakeLists.txt, but rather removing
the stale files was the solution. Sorry for the unnecessary noise.
llvm-svn: 212446