Summary:
Vectors are normally 16-byte aligned, however the O32 ABI enforces a
maximum alignment of 8-bytes since the base of the stack is 8-byte aligned.
Previously, this was enforced on the caller side, but not on the callee side.
This fixes the output of OpenCL's printf when given vectors.
Reviewers: atanasyan
Reviewed By: atanasyan
Subscribers: llvm-commits, pekka.jaaskelainen
Differential Revision: http://reviews.llvm.org/D5433
llvm-svn: 218248
This patch adds codegen for constructs:
#pragma omp critical [name]
<body>
It generates global variable ".gomp_critical_user_[name].var" of type int32[8]. Then it generates library call "kmpc_critical(loc, gtid, .gomp_critical_user_[name].var)", code for <body> statement and final call "kmpc_end_critical(loc, gtid, .gomp_critical_user_[name].var)".
Differential Revision: http://reviews.llvm.org/D5202
llvm-svn: 218239
This patch makes sure that the dllexport attribute is transferred to the alias when such alias is created. It only affects the Itanium ABI because for the MSVC ABI a workaround is in place to not generate aliases of dllexport ctors/dtors.
A new CodeGenModule function is provided, CodeGenModule::setAliasAttributes, to factor the code for transferring attributes to aliases.
llvm-svn: 218159
Clang can already handle
-------------------------------------------
struct S {
static const int x;
};
template<typename T> struct U {
static const int k;
};
template<typename T> const int U<T>::k = T::x;
const int S::x = 42;
extern const int *f();
const int *g() { return &U<S>::k; }
int main() {
return *f() + U<S>::k;
}
const int *f() { return &U<S>::k; }
-------------------------------------------
since r217264 which puts the .inint_array section in the same COMDAT
as the variable.
This patch allows the linker to more easily delete some dead code and data by
putting the guard variable and init function in the same COMDAT.
This is a fixed version of r218089.
llvm-svn: 218141
The field is defined as:
If the third field is present, non-null, and points to a global variable or function, the initializer function will only run if the associated data from the current module is not discarded.
And without COMDATs we can't implement that.
llvm-svn: 218097
Clang can already handle
-------------------------------------------
struct S {
static const int x;
};
template<typename T> struct U {
static const int k;
};
template<typename T> const int U<T>::k = T::x;
const int S::x = 42;
extern const int *f();
const int *g() { return &U<S>::k; }
int main() {
return *f() + U<S>::k;
}
const int *f() { return &U<S>::k; }
-------------------------------------------
since r217264 which puts the .inint_array section in the same COMDAT
as the variable.
This patch allows the linker to more easily delete some dead code and data by
putting the guard variable and init function in the same COMDAT.
llvm-svn: 218089
CodeGen would try to come up with an LLVM IR type for a pointer to
member type on the way to forming an LLVM IR type for a pointer to
pointer to member type.
However, if the pointer to member representation has not been locked in yet,
we would not be able to come up with a pointer to member IR type.
In these cases, make the pointer to member type an incomplete type.
This will make the pointer to pointer to member type a pointer to an
incomplete type. If the class eventually obtains an inheritance model,
we will make the pointer to member type represent the actual inheritance
model.
Differential Revision: http://reviews.llvm.org/D5373
llvm-svn: 218084
There are situations when clang knows that the C1 and C2 constructors
or the D1 and D2 destructors are identical. We already optimize some
of these cases, but cannot optimize it when the GlobalValue is
weak_odr.
The problem with weak_odr is that an old TU seeing the same code will
have a C1 and a C2 comdat with the corresponding symbols. We cannot
suddenly start putting the C2 symbol in the C1 comdat as we cannot
guarantee that the linker will not pick a .o with only C1 in it.
The solution implemented by GCC is to expand the ABI to have a comdat
whose name uses a C5/D5 suffix and always has both symbols. That is
what this patch implements.
llvm-svn: 217874
This adds a flag called -fseh-exceptions that uses the native Windows
.pdata and .xdata unwind mechanism to throw exceptions. The other EH
possibilities are DWARF and SJLJ exceptions.
Patch by Martell Malone!
Reviewed By: asl, rnk
Differential Revision: http://reviews.llvm.org/D3419
llvm-svn: 217790
Deleted virtual functions get _purecall inserted into the vftable.
Earlier CTPs would simply stick nullptr in there.
N.B. MSVC can't handle deleted virtual functions which require return
adjusting thunks, they give an error that a deleted function couldn't be
called inside of a compiler generated function. We get this correct by
making the thunk have a __purecall entry as well.
llvm-svn: 217654
We assumed that the incoming this argument would be the last argument.
However, this is not true under the MS ABI.
This fixes PR20897.
llvm-svn: 217642
This prevents initializers for comdat-folded globals from running multiple times.
Differential Revision: http://reviews.llvm.org/D5281
llvm-svn: 217534
Pointer-sized alignment is sufficient as we only ever read single values
from the table. Otherwise we'd bump the alignment to 16 bytes in the
backend if the vtable is larger than 16 bytes. This is great for
structures that are accessed with vector instructions or copied around, but
that's simply not the case for vtables.
Shrinks the data segment of a Release x86_64 clang by 0.3%. The wins are
larger for i386 and code bases that use vtables more often than we do.
This matches the behavior of GCC 5.
llvm-svn: 217495
Summary:
This patch implements a new UBSan check, which verifies
that function arguments declared to be nonnull with __attribute__((nonnull))
are actually nonnull in runtime.
To implement this check, we pass FunctionDecl to CodeGenFunction::EmitCallArgs
(where applicable) and if function declaration has nonnull attribute specified
for a certain formal parameter, we compare the corresponding RValue to null as
soon as it's calculated.
Test Plan: regression test suite
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits, rnk
Differential Revision: http://reviews.llvm.org/D5082
llvm-svn: 217389
There were code paths that are duplicated for constructors and destructors just
because we have both CXXCtorType and CXXDtorsTypes.
This patch introduces an unified enum and reduces code deplication a bit.
llvm-svn: 217383
This makes use of the recently-added @llvm.assume intrinsic to implement a
__builtin_assume(bool) intrinsic (to provide additional information to the
optimizer). This hooks up __assume in MS-compatibility mode to mirror
__builtin_assume (the semantics have been intentionally kept compatible), and
implements GCC's __builtin_assume_aligned as assume((p - o) & mask == 0). LLVM
now contains special logic to deal with assumptions of this form.
llvm-svn: 217349
This patch adds support for the 32bit numeric max/min and directed round-to-integral NEON intrinsics that were added as part of v8, along with unit tests.
Patch by Graham Hunter!
llvm-svn: 217242
For naked functions with parameters, Clang would still emit stores in the prologue
that would clobber the stack, because LLVM doesn't set up a stack frame. (This
shows up in -O0 compiles, because the stores are optimized away otherwise.)
For example:
__attribute__((naked)) int f(int x) {
asm("movl $42, %eax");
asm("retl");
}
Would result in:
_Z1fi:
movl 12(%esp), %eax
movl %eax, (%esp) <--- Oops.
movl $42, %eax
retl
Differential Revision: http://reviews.llvm.org/D5183
llvm-svn: 217198
If control falls off the end of a function after an __asm block, MSVC
assumes that the inline assembly filled the EAX and possibly EDX
registers with an appropriate return value. This functionality is used
in inline functions returning 64-bit integers in system headers, so we
need some amount of compatibility.
This is implemented in Clang by adding extra output constraints to every
inline asm block, and storing the resulting output registers into the
return value slot. If we see an asm block somewhere in the function
body, we emit a normal epilogue instead of marking the end of the
function with a return type unreachable.
Normal returns in functions not using this functionality will overwrite
the return value slot, and in most cases LLVM should be able to
eliminate the dead stores.
Fixes PR17201.
Reviewed By: majnemer
Differential Revision: http://reviews.llvm.org/D5177
llvm-svn: 217187
Summary:
This allows us to easily find them in the backend after the aggregates have
been lowered to other types. This is important on big-endian targets using
the N32/N64 ABI's since these ABI's must shift small structures into the
upper bits of the register.
Reviewers: atanasyan
Reviewed By: atanasyan
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5005
llvm-svn: 217160
Summary:
They are returned indirectly which causes the other arguments to move to
the next argument slot.
With this, utils/ABITest does not discover any failing cases in the first
500 attempts on big/little endian for O32. Previously some of these failed.
Also tested N32/N64 little endian (big endian has other known issues) with
no issues.
Reviewers: atanasyan
Reviewed By: atanasyan
Subscribers: atanasyan, cfe-commits
Differential Revision: http://reviews.llvm.org/D4811
llvm-svn: 217147
Using the intrinsic allows the SelectionDAGBuilder to turn this call
into the FABS Node and also the intrinsic is something the vectorizer knows
how to vectorize.
This patch also sets the readnone attribute on this call, which should
enable additional optmizations.
llvm-svn: 217042
This avoids encoding information about the function prototype into the
thunk at the cost of some function prototype bitcast gymnastics.
Fixes PR20653.
llvm-svn: 216782