Summary:
This fixes a couple of issues. One is ensuring that AOK_Label rewrite
rules have a lower priority than AOK_Skip rules, as AOK_Skip needs to
be able to skip the brackets properly. The other part of the fix ensures
that we don't overwrite Identifier when looking up the identifier, and
that we use the locally available information to generate the AOK_Label
rewrite in ParseIntelIdentifier. Doing that in CreateMemForInlineAsm
would be problematic since the Start location there may point to the
beginning of a bracket expression, and not necessarily the beginning of
an identifier.
This also means that we don't need to carry around the InternlName field,
which helps simplify the code.
Test Plan: This will be tested on the clang side.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5445
llvm-svn: 218270
These are just test cases, no actual code yet. This establishes the
baseline fallback strategy we're starting from on AVX2 and the expected
lowering we use on AVX1.
Also, these test cases are very much generated. I've manually crafted
the specific pattern set that I'm hoping will be useful at exercising
the lowering code, but I've not (and could not) manually verify *all* of
these. I've spot checked and they seem legit to me.
As with the rest of vector shuffling, at a certain point the only really
useful way to check the correctness of this stuff is through fuzz
testing.
llvm-svn: 218267
Summary:
r218229 made this function return a dummy nullptr in order to avoid
API breakage between clang/llvm.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5432
llvm-svn: 218266
Test Plan: I noticed this through code inspection. The callers use the return value to remove the SectionAttr if a diagnostic is emitted, but I don't think the failure to do so is observable right now.
Reviewers: rnk
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D5438
llvm-svn: 218265
We generate broadcast instructions on CPUs with AVX2 to load some constant splat vectors.
This patch should preserve all existing behavior with regular optimization levels,
but also use splats whenever possible when optimizing for *size* on any CPU with AVX or AVX2.
The tradeoff is up to 5 extra instruction bytes for the broadcast instruction to save
at least 8 bytes (up to 31 bytes) of constant pool data.
Differential Revision: http://reviews.llvm.org/D5347
llvm-svn: 218263
Patch from Rafael Auler!
When a shared lib has an undefined symbol that is defined in a regular object
(the program), the final executable must export this symbol in the dynamic
symbol table. However, in the current logic, lld only puts the symbol in the
dynamic symbol table if the symbol is weak. This patch fixes lld to put the
symbol in the dynamic symbol table regardless if it is weak or not.
This caused a problem in FreeBSD10, whose programs link against a crt1.o
that defines the symbol __progname, which is, in turn, undefined in libc.so.7
and will only be resolved in runtime.
http://reviews.llvm.org/D5424
llvm-svn: 218259
This reverts commit r218254.
The global_atomics.ll test fails with asserts disabled. For some reason,
the compiler fails to produce the atomic no return variants.
llvm-svn: 218257
BypassSlowDiv is used by codegen prepare to insert a run-time
check to see if the operands to a 64-bit division are really 32-bit
values and if they are it will do 32-bit division instead.
This is not useful for R600, which has predicated control flow since
both the 32-bit and 64-bit paths will be executed in most cases. It
also increases code size which can lead to more instruction cache
misses.
llvm-svn: 218252
ISD::MUL and ISD:UMULO are the same except that UMULO sets an overflow
bit. Since we aren't using the overflow bit, we should use ISD::MUL.
llvm-svn: 218251
Summary:
Vectors are normally 16-byte aligned, however the O32 ABI enforces a
maximum alignment of 8-bytes since the base of the stack is 8-byte aligned.
Previously, this was enforced on the caller side, but not on the callee side.
This fixes the output of OpenCL's printf when given vectors.
Reviewers: atanasyan
Reviewed By: atanasyan
Subscribers: llvm-commits, pekka.jaaskelainen
Differential Revision: http://reviews.llvm.org/D5433
llvm-svn: 218248
Summary:
Update segmented-stacks*.ll tests with x32 target case and make
corresponding changes to make them pass.
Test Plan: tests updated with x32 target
Reviewers: nadav, rafael, dschuff
Subscribers: llvm-commits, zinovy.nis
Differential Revision: http://reviews.llvm.org/D5245
llvm-svn: 218247
Summary: getSubroutineName is currently only used by llvm-symbolizer, thus add a binary test containing a cross-cu inlining example.
Reviewers: samsonov, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5394
llvm-svn: 218245
When dump_instruction_bytes=1 and the instruction pointer doesn't point to the zero page, ASan prints 16 bytes starting at the instruction point.
llvm-svn: 218243
The PSHUFB mask decode routine used to assert if the mask index was out of
range (<0 or greater than the size of the vector). The problem is, we can
legitimately have a PSHUFB with a large index using intrinsics. The
instruction only uses the least significant 4 bits. This change removes the
assert and masks the index to match the instruction behaviour.
llvm-svn: 218242
We currently emit an error when trying to assemble a file with more
than one section using DWARF2 debug info. This should be a warning
instead, as the resulting file will still be usable, but with a
degraded debug illusion.
llvm-svn: 218241
Summary:
This uses a bit hacky way to set the defaults for the spaces before
comments, but it's also one of the simplest ways. Fixed a bug with how the
SpacesBeforeComments option was used.
Reviewers: djasper
Reviewed By: djasper
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D5410
llvm-svn: 218240
This patch adds codegen for constructs:
#pragma omp critical [name]
<body>
It generates global variable ".gomp_critical_user_[name].var" of type int32[8]. Then it generates library call "kmpc_critical(loc, gtid, .gomp_critical_user_[name].var)", code for <body> statement and final call "kmpc_end_critical(loc, gtid, .gomp_critical_user_[name].var)".
Differential Revision: http://reviews.llvm.org/D5202
llvm-svn: 218239
As of July 2014, all backends have been updated to implement
AtomicRMWInst::Nand as ~(x & y) (and not as x & ~y, as some did previously).
This was added to the release notes in r212635 (and the LangRef had been
changed), but it seems that we forgot to update the header-file description.
llvm-svn: 218236
for LVI algorithm. For a specific value to be lowered, when the number of basic
blocks being checked for overdefined lattice value is larger than
lvi-overdefined-BB-threshold, or the times of encountering overdefined value
for a single basic block is larger than lvi-overdefined-threshold, the LVI
algorithm will stop further lowering the lattice value.
llvm-svn: 218231
Summary:
This fixes PR20023. In order to implement this scoping rule, we piggy
back on the existing LabelDecl machinery, by creating LabelDecl's that
will carry the "internal" name of the inline assembly label, which we
will rewrite the asm label to.
Reviewers: rnk
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4589
llvm-svn: 218230
The implementation of the callback in clang's Sema will return an
internal name for labels.
Test Plan: Will be tested in clang.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4587
llvm-svn: 218229
a more sane approach to AVX2 support.
Fundamentally, there is no useful way to lower integer vectors in AVX.
None. We always end up with a VINSERTF128 in the end, so we might as
well eagerly switch to the floating point domain and do everything
there. This cleans up lots of weird and unlikely to be correct
differences between integer and floating point shuffles when we only
have AVX1.
The other nice consequence is that by doing things this way we will make
it much easier to write the integer lowering routines as we won't need
to duplicate the logic to check for AVX vs. AVX2 in each one -- if we
actually try to lower a 256-bit vector as an integer vector, we have
AVX2 and can rely on it. I think this will make the code much simpler
and more comprehensible.
Currently, I've disabled *all* support for AVX2 so that we always fall
back to AVX. This keeps everything working rather than asserting. That
will go away with the subsequent series of patches that provide
a baseline AVX2 implementation.
Please note, I'm going to implement AVX2 *without access to hardware*.
That means I cannot correctness test this path. I will be relying on
those with access to AVX2 hardware to do correctness testing and fix
bugs here, but as a courtesy I'm trying to sketch out the framework for
the new-style vector shuffle lowering in the context of the AVX2 ISA.
llvm-svn: 218228
input v8f32 shuffles which are not 128-bit lane crossing but have
different shuffle patterns in the low and high lanes. This removes most
of the extract/insert traffic that was unnecessary and is particularly
good at lowering cases where only one of the two lanes is shuffled at
all.
I've also added a collection of test cases with undef lanes because this
lowering is somewhat more sensitive to undef lanes than others.
llvm-svn: 218226
in the high and low 128-bit lanes of a v8f32 vector.
No functionality change yet, but wanted to set up the baseline for my
next patch which will make these quite a bit better. =]
llvm-svn: 218224