If after if-conversion, most of the instructions in this new BB construct a long and slow dependence chain, it may be slower than cmp/branch, even if the branch has a high miss rate, because the control dependence is transformed into data dependence, and control dependence can be speculated, and thus, the second part can execute in parallel with the first part on modern OOO processor.
This patch checks for the long dependence chain, and give up if-conversion if find one.
Differential Revision: https://reviews.llvm.org/D39352
llvm-svn: 321377
This seems to improve X86's ability to match this into an address computation. Otherwise the other operand gets assigned to the base register and the stack pointer + frame index ends up in the index register. But index registers can't encode ESP/RSP so we end up having to move it into another register to meet the constraint.
I could try to improve the address matcher in X86, but swapping the producer seemed easier. Several other places already have the operands in this order so this is at least consistent.
llvm-svn: 321370
Despite what the comment said there isn't better codegen for 512-bit vectors. The 128/256/512 bit implementation jus stores to memory and loads an element. There's no advantage to doing that with a larger size. In fact in many cases it causes a stack realignment and generates worse code.
llvm-svn: 321369
Currently, inline cost model considers a binary operator as free only if both
its operands are constants. Some simple cases are missing such as a + 0, a - a,
etc. This patch modifies visitBinaryOperator() to call SimplifyBinOp() without
going through simplifyInstruction() to get rid of the constant restriction.
Thus, visitAnd() and visitOr() are not needed.
Differential Revision: https://reviews.llvm.org/D41494
llvm-svn: 321366
Pointer constants are pretty rare, since we usually represent them as
integer constants and then cast to pointer. One notable exception is the
null pointer constant, which is represented directly as a G_CONSTANT 0
with pointer type. Mark it as legal and make sure it is selected like
any other integer constant.
llvm-svn: 321354
Previously prefetch was only considered legal if sse was enabled, but it should be supported with 3dnow as well.
The prfchw flag now imply at least some form of prefetch without the write hint is available, either the sse or 3dnow version. This is true even if 3dnow and sse are explicitly disabled.
Similarly prefetchwt1 feature implies availability of prefetchw and the the prefetcht0/1/2/nta instructions. This way we can support _MM_HINT_ET0 using prefetchw and _MM_HINT_ET1 with prefetchwt1. And its assumed that if we have levels for the write hint we would have levels for the non-write hint, thus why we enable the sse prefetch instructions.
I believe this behavior is consistent with gcc. I've updated the prefetch.ll to test all of these combinations.
llvm-svn: 321335
The penalty is currently getting applied in a bunch of places where it
doesn't make sense, like bitcasts (which are free) and calls (which
were getting the call penalty applied twice). Instead, just apply the
penalty to binary operators and floating-point casts.
While I'm here, also fix getFPOpCost() to do the right thing in more
cases, so we don't have to dig into function attributes.
Differential Revision: https://reviews.llvm.org/D41522
llvm-svn: 321332
Summary:
Add an additional bit to ModRefInfo, ModRefInfo::Must, to be cleared for known must aliases.
Shift existing Mod/Ref/ModRef values to include an additional most
significant bit. Update wrappers that modify ModRefInfo values to
reflect the change.
Notes:
* ModRefInfo::Must is almost entirely cleared in the AAResults methods, the remaining changes are trying to preserve it.
* Only some small changes to make custom AA passes set ModRefInfo::Must (BasicAA).
* GlobalsModRef already declares a bit, who's meaning overlaps with the most significant bit in ModRefInfo (MayReadAnyGlobal). No changes to shift the value of MayReadAnyGlobal (see AlignedMap). FunctionInfo.getModRef() ajusts most significant bit so correctness is preserved, but the Must info is lost.
* There are cases where the ModRefInfo::Must is not set, e.g. 2 calls that only read will return ModRefInfo::NoModRef, though they may read from exactly the same location.
Reviewers: dberlin, hfinkel, george.burgess.iv
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D38862
llvm-svn: 321309
This should only affect what we do for v8i16. Previously we went to v8i64, but if we have VLX we only need v8i32. This prevents an unnecessary zmm usage.
llvm-svn: 321303
Reorganizes the DWARF consumer to derive the string offsets table
contribution's format from the contribution header instead of
(incorrectly) from the unit's format.
Reviewers: JDevliegehere, aprantl
Differential Revision: https://reviews.llvm.org/D41146
llvm-svn: 321295
We should have equally good shuffle options for v8i32 with VLX. This was spotted during my attempts to remove 512-bit vectors from SKX.
We still use 512-bits for v16i1, v32i1, and v64i1. I'm less sure we can handle those well with narrower vectors. i32 and i64 element sizes get the best shuffle support.
llvm-svn: 321291
The knownbits_mask_or_shuffle_uitofp change is interesting - shuffle combines manage to kick in, removing the AND constant mask load. For targets with fast-variable-shuffle this should reduce further to VPOR+VPSHUFB+VCVTDQ2PS.
llvm-svn: 321279
The build failure was caused by an assertion in pre-legalization DAGCombine:
Combining: t6: ppcf128 = uint_to_fp t5
... into: t20: f32 = PPCISD::FCFIDUS t19
which is clearly wrong since ppcf128 are definitely different type with f32 and
we cannot change the node value type when do DAGCombine. The fix is don't
handle ppc_fp128 or i1 conversions in PPCTargetLowering::combineFPToIntToFP and
leave it to downstream to legalize it and expand it to small legal types.
Differential Revision: https://reviews.llvm.org/D41411
llvm-svn: 321276
During the review of D40362 I spotted that this test wasn't actually
testing the eva instructions due to '-mattr==eva', rather than '-mattr=+eva',
which resulted in test having no effect.
llvm-svn: 321273
If the SRL node is only used by an AND, we may be able to set the
ExtVT to the width of the mask, making the AND redundant. To support
this, another check has been added in isLegalNarrowLoad which queries
whether the load is valid.
Differential Revision: https://reviews.llvm.org/D41350
llvm-svn: 321259
This change adds `printMipsGOT` and `printMipsPLT` methods to the
`DumpStyle` class and overrides them in the `GNUStyle` and `LLVMStyle`
descendants. To pass information about GOT/PLT layout into these
methods, the `MipsGOTParser` class has been extended to hold all
necessary data.
llvm-svn: 321253
When weak aliases are used with in same translation
unit we need to be able to directly reference to alias
and not just the thing it is aliases. We do this by
defining both a wasm import and a wasm export in this
case that result in a single Symbol. This change is
a partial revert of rL314245. A corresponding lld
change address the previous issues we had with this.
See: https://github.com/WebAssembly/tool-conventions/issues/34
Differential Revision: https://reviews.llvm.org/D41472
llvm-svn: 321242
If a block has N predecessors, then the current algorithm will try to
sink common code to this block N times (whenever we visit a
predecessor). Every attempt to sink the common code includes going
through all predecessors, so the complexity of the algorithm becomes
O(N^2).
With this patch we try to sink common code only when we visit the block
itself. With this, the complexity goes down to O(N).
As a side effect, the moment the code is sunk is slightly different than
before (the order of simplifications has been changed), that's why I had
to adjust two tests (note that neither of the tests is supposed to test
SimplifyCFG):
* test/CodeGen/AArch64/arm64-jumptable.ll - changes in this test mimic
the changes that previous implementation of SimplifyCFG would do.
* test/CodeGen/ARM/avoid-cpsr-rmw.ll - in this test I disabled common
code sinking by a command line flag.
llvm-svn: 321236
The AArch64 backend contains code to optimize {s,u}{add,sub}.with.overflow during SelectionDAG. This commit ports that code to the ARM backend.
Differential revision: https://reviews.llvm.org/D35635
llvm-svn: 321224
Add support for 'objdump -print-imm-hex' for imm64, operand imm
and branch target. If user programs encode immediate values
as hex numbers, such an option will make it easy to correlate
asm insns with source code. This option also makes it easy
to correlate imm values with insn encoding.
There is one changed behavior in this patch. In old way, we
print the 64bit imm as u64:
O << (uint64_t)Op.getImm();
and the new way is:
O << formatImm(Op.getImm());
The formatImm is defined in llvm/MC/MCInstPrinter.h as
format_object<int64_t> formatImm(int64_t Value)
So the new way to print 64bit imm is i64 type.
If a 64bit value has the highest bit set, the old way
will print the value as a positive value and the
new way will print as a negative value. The new way
is consistent with x86_64.
For the code (see the test program):
...
if (a == 0xABCDABCDabcdabcdULL)
...
x86_64 objdump, with and without -print-imm-hex, looks like:
48 b8 cd ab cd ab cd ab cd ab movabsq $-6067004223159161907, %rax
48 b8 cd ab cd ab cd ab cd ab movabsq $-0x5432543254325433, %rax
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 321215
Allows preserving MachineMemOperands on intrinsics
through selection. For reasons I don't understand, this
is a static property of the pattern and the selector
deliberately goes out of its way to drop if not present.
Intrinsics already inherit from SDPatternOperator allowing
them to be used directly in instruction patterns. SDPatternOperator
has a list of SDNodeProperty, but you currently can't set them on
the intrinsic. Without SDNPMemOperand, when the node is selected
any memory operands are always dropped. Allowing setting this
on the intrinsics avoids needing to introduce another equivalent
target node just to have SDNPMemOperand set.
llvm-svn: 321212
This patch modifies the indirect call promotion utilities by exposing and using
an unconditional call promotion interface. The unconditional promotion
interface (i.e., call promotion without creating an if-then-else) can be used
if it's known that an indirect call has only one possible callee. The existing
conditional promotion interface uses this unconditional interface to promote an
indirect call after it has been versioned and placed within the "then" block.
A consequence of unconditional promotion is that the fix-up operations for phi
nodes in the normal destination of invoke instructions are changed. This is
necessary because the existing implementation assumed that an invoke had been
versioned, creating a "merge" block where a return value bitcast could be
placed. In the new implementation, the edge between a promoted invoke's parent
block and its normal destination is split if needed to add a bitcast for the
return value. If the invoke is also versioned, the phi node merging the return
value of the promoted and original invoke instructions is placed in the "merge"
block.
Differential Revision: https://reviews.llvm.org/D40751
llvm-svn: 321210
Gather/scatter can implicitly sign extend from i32->i64 on indices. So if we know the sign bit of the input to a zext is 0 we can use the implicit extension.
llvm-svn: 321209
Summary: Very similar to AddressSanitizer, with the exception of the error type encoding.
Reviewers: kcc, alekseyshl
Subscribers: cfe-commits, kubamracek, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41417
llvm-svn: 321203
This patch turns shuffles of fadd/fsub with fmul into fmsubadd.
Patch by Dmitry Venikov
Differential Revision: https://reviews.llvm.org/D40335
llvm-svn: 321200
Summary:
The function section prefix for PGO based layout (e.g. hot/unlikely)
should look at the hotness of all blocks not just the entry BB.
A function with a cold entry but a very hot loop should be placed in the
hot section, for example, so that it is located close to other hot
functions it may call. For SamplePGO it was already looking at the
branch weights on calls, and I made that code conditional on whether
this is SamplePGO since it was essentially a noop for instrumentation
PGO anyway.
Reviewers: davidxl
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D41395
llvm-svn: 321197