BasicAA knows how to analyze phis, but to control compile time, we're fairly limited in doing so. This patch loosens that restriction just slightly when there is exactly one phi input (after discounting induction variable increments). The result of this is that we can handle more cases around nested and sibling loops with pointer induction variables.
A few points to note.
* This is deliberately extremely restrictive about recursing through at most one input of the phi. There's a known general problem with BasicAA sometimes hitting exponential compile time already, and this patch makes every effort not to compound the problem. Once the root issue is fixed, we can probably loosen the restrictions here a bit.
* As seen in the test file, we're still missing cases which aren't *directly* based on phis (e.g. using the indvar increment). I believe this to be a separate problem and am going to explore this in another patch once this one lands.
* As seen in the test file, this results in the unfortunate fact that using phivalues sometimes results in worse quality results. I believe this comes down to an oversight in how recursive phi detection was implemented for phivalues. I'm happy to tackle this in a follow up change.
Differential Revision: https://reviews.llvm.org/D97401
This is almost purely NFC, it just fits more obviously in the flow of the code now that we've standardized on the index different approach. The non-NFC bit is that because of canceling the VariableOffsets in the subtract, we can now handle the case where both sides involve a common variable offset. This isn't an "interesting" improvement; it just happens to fall out of the natural code structure.
One subtle point - the placement of this above the BaseAlias check is important in the original code as this can return NoAlias even when we can't find a relation between the bases otherwise.
Also added some enhancement TODOs noticed while understanding the existing code.
Note: This is slightly different than the LGTMed version. I fixed the "inbounds" issue Nikita noticed with the original code in e6e5ef4 and rebased this to include the same fix.
Differential Revision: https://reviews.llvm.org/D97520
This was pointed out in review of D97520 by Nikita, but existed in the original code as well.
The basic issue is that a decomposed GEP expression describes (potentially) more than one getelementptr. The "inbounds" derived UB which justifies this aliasing rule requires that the entire offset be composed of "inbounds" geps. Otherwise, as can be seen in the recently added and changes in this patch test, we can end up with a large commulative offset with only a small sub-offset actually being "inbounds". If that small sub-offset lies within the object, the result was unsound.
We could potentially be fancier here, but for the moment, simply be conservative when any of the GEPs parsed aren't inbounds.
This reverts commit 43a569faeb.
Unhelpfully, the tool just added the header and didn't actually update any of the tests. I didn't notice until after pushing.
I think we can use here same logic as for nonnull.
strlen(X) - X must be noundef => valid pointer.
for libcalls with size arg, we add noundef only if size is known and greater than 0 - so pointers must be noundef (valid ones)
Reviewed By: jdoerfert, aqjune
Differential Revision: https://reviews.llvm.org/D95122
This enables use of MemorySSA instead of MemDep in MemCpyOpt. To
allow this without significant compile-time impact, the MemCpyOpt
pass is moved directly before DSE (in the cases where this was not
already the case), which allows us to reuse the existing MemorySSA
analysis.
Unlike the MemDep-based implementation, the MemorySSA-based MemCpyOpt
can also perform simple optimizations across basic blocks.
Differential Revision: https://reviews.llvm.org/D94376
We can always look through single-argument (LCSSA) phi nodes when
performing alias analysis. getUnderlyingObject() already does this,
but stripPointerCastsAndInvariantGroups() does not. We still look
through these phi nodes with the usual aliasPhi() logic, but
sometimes get sub-optimal results due to the restrictions on value
equivalence when looking through arbitrary phi nodes. I think it's
generally beneficial to keep the underlying object logic and the
pointer cast stripping logic in sync, insofar as it is possible.
With this patch we get marginally better results:
aa.NumMayAlias | 5010069 | 5009861
aa.NumMustAlias | 347518 | 347674
aa.NumNoAlias | 27201336 | 27201528
...
licm.NumPromoted | 1293 | 1296
I've renamed the relevant strip method to stripPointerCastsForAliasAnalysis(),
as we're past the point where we can explicitly spell out everything
that's getting stripped.
Differential Revision: https://reviews.llvm.org/D96668
At this point, we can treat the case of GEP/GEP aliasing and
GEP/non-GEP aliasing in essentially the same way. The only
differences are that we need to do an additional negative GEP base
check, and that we perform a bailout on unknown sizes for the
GEP/non-GEP case (the latter exists only to limit compile-time).
This change is not quite NFC due to the peculiar effect that
the DecomposedGEP for V2 can actually be non-trivial even if V2
is not a GEP. The reason for this is that getUnderlyingObject()
can look through LCSSA phi nodes, while stripPointerCasts() doesn't.
This can lead to slightly better results if single-entry phi nodes
occur inside a loop, where looking through the phi node via aliasPhi()
would subject it to phi cycle equivalence restrictions. It would
probably make sense to adjust pointer cast stripping (for AA) to
handle this case, and ensure consistent results.
Instcombine will convert the nonnull and alignment assumption that use the boolean condtion
to an assumption that uses the operand bundles when knowledge retention is enabled.
Differential Revision: https://reviews.llvm.org/D82703
Instcombine will convert the nonnull and alignment assumption that use the boolean condtion
to an assumption that uses the operand bundles when knowledge retention is enabled.
Differential Revision: https://reviews.llvm.org/D82703
Just like llvm.assume, there are a lot of cases where we can just ignore llvm.experimental.noalias.scope.decl.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93042
Change the way NoAlias assumptions in BasicAA are handled. Instead of
handling this inside the phi-phi code, always initially insert a
NoAlias result into the map and keep track whether it is used.
If it is used, then we require that we also get back NoAlias from
the recursive queries. Otherwise, the entry is changed to MayAlias.
Additionally, keep track of all location pairs we inserted that may
still be based on assumptions higher up. If it turns out one of those
assumptions is incorrect, we flush them from the cache.
The compile-time impact for the new implementation is significantly
higher than the previous iteration of this patch:
https://llvm-compile-time-tracker.com/compare.php?from=c0bb9859de6991cc233e2dedb978dd118da8c382&to=c07112373279143e37568b5bcd293daf81a35973&stat=instructions
However, it should avoid the exponential runtime cases we run into
if we don't cache assumption-based results entirely.
This also produces better results in some cases, because NoAlias
assumptions can now start at any root, rather than just phi-phi pairs.
This is not just relevant for analysis quality, but also for BatchAA
consistency: Otherwise, results would once again depend on query order,
though at least they wouldn't be wrong.
This ended up both more complicated and more expensive than I hoped,
but I wasn't able to come up with another solution that satisfies all
the constraints.
Differential Revision: https://reviews.llvm.org/D91936
D71264 started using a context instruction in a computeKnownBits()
call. However, if aliasing between two GEPs is checked, then the
choice of context instruction will be different for alias(GEP1, GEP2)
and alias(GEP2, GEP1), which is not supposed to happen.
Resolve this by remembering which GEP a certain VarIndex belongs to,
and use that as the context instruction. This makes the choice of
context instruction predictable and symmetric.
It should be noted that this choice of context instruction is
non-optimal (just like the previous choice): The AA query result is
only valid at points that are reachable from *both* instructions.
Using either one of them is conservatively correct, but a larger
context may also be valid to use.
Differential Revision: https://reviews.llvm.org/D93183
byval arguments should mostly get the same treatment as noalias
arguments in alias analysis. This was not the case for the
isIdentifiedFunctionLocal() function.
Marking byval arguments as identified function local means that
they cannot alias with other arguments, which I believe is correct.
Differential Revision: https://reviews.llvm.org/D93602
Temporarily revert commit 8b1c4e310c.
After 8b1c4e310c the compile-time for `MultiSource/Benchmarks/MiBench/consumer-lame`
dramatically increases with -O3 & LTO, causing issues for builders with
that configuration.
I filed PR48553 with a smallish reproducer that shows a 10-100x compile
time increase.
BasicAA currently handles cases like Scale*V0 + (-Scale)*V1 where
V0 != V1, but does not handle the simpler case of Scale*V with
V != 0. Add it based on an isKnownNonZero() call.
I'm not passing a context instruction for now, because the existing
approach of always using GEP1 for context could result in symmetry
issues.
Differential Revision: https://reviews.llvm.org/D93162
If we have two unknown sizes and one GEP operand and one non-GEP
operand, then we currently simply return MayAlias. The comment says
we can't do anything useful ... but we can! We can still check that
the underlying objects are different (and do so for the GEP-GEP case).
To reduce the compile-time impact, this a) checks this early, before
doing the relatively expensive GEP decomposition that will not be
used and b) doesn't do the check if the other operand is a phi or
select. In that case, the phi/select will already recurse, so this
would just do two slightly different recursive walks that arrive at
the same roots.
Compile-time is still a bit of a mixed bag: https://llvm-compile-time-tracker.com/compare.php?from=624af932a808b363a888139beca49f57313d9a3b&to=845356e14adbe651a553ed11318ddb5e79a24bcd&stat=instructions
On average this is a small improvement, but sqlite with ThinLTO has
a 0.5% regression (lencod has a 1% improvement).
The BasicAA test case checks this by using two memsets with unknown
size. However, the more interesting case where this is useful is
the LoopVectorize test case, as analysis of accesses in loops tends
to always us unknown sizes.
Differential Revision: https://reviews.llvm.org/D92401
BasicAA has some special bit of logic for "same base pointer" GEPs
that performs a structural comparison: It only looks at two GEPs
with the same base (as opposed to two GEP chains with a MustAlias
base) and compares their indexes in a limited way. I generalized
part of this code in D91027, and this patch merges the remainder
into the normal decomposed GEP logic.
What this code ultimately wants to do is to determine that
gep %base, %idx1 and gep %base, %idx2 don't alias if %idx1 != %idx2,
and the access size fits within the stride.
We can express this in terms of a decomposed GEP expression with
two indexes scale*%idx1 + -scale*%idx2 where %idx1 != %idx2, and
some appropriate checks for sizes and offsets.
This makes the reasoning slightly more powerful, and more
importantly brings all the GEP logic under a common umbrella.
Differential Revision: https://reviews.llvm.org/D92723
Due to the recursion through phis basicaa does, the code needs to be extremely careful not to reason about equality between values which might represent distinct iterations. I'm generally skeptical of the correctness of the whole scheme, but this particular patch fixes one particular instance which is demonstrateable incorrect.
Interestingly, this appears to be the second attempted fix for the same issue. The former fix is incomplete and doesn't address the actual issue.
Differential Revision: https://reviews.llvm.org/D92694
For recursive phis, we skip the recursive operands and check that
the remaining operands are NoAlias with an unknown size. Currently,
this is limited to inbounds GEPs with positive offsets, to
guarantee that the recursion only ever increases the pointer.
Make this more general by only requiring that the underlying object
of the phi operand is the phi itself, i.e. it it based on itself in
some way. To compensate, we need to use a beforeOrAfterPointer()
location size, as we no longer have the guarantee that the pointer
is strictly increasing.
This allows us to handle some additional cases like negative geps,
geps with dynamic offsets or geps that aren't inbounds.
Differential Revision: https://reviews.llvm.org/D91914
The size requirement on V2 was present because it was not clear
whether an unknown size would allow an access before the start of
V2, which could then overlap. This is clarified since D91649: In
this part of BasicAA, all accesses can occur only after the base
pointer, even if they have unknown size.
This makes the positive and negative offset cases symmetric.
Differential Revision: https://reviews.llvm.org/D91482
Currently, we have some confusion in the codebase regarding the
meaning of LocationSize::unknown(): Some parts (including most of
BasicAA) assume that LocationSize::unknown() only allows accesses
after the base pointer. Some parts (various callers of AA) assume
that LocationSize::unknown() allows accesses both before and after
the base pointer (but within the underlying object).
This patch splits up LocationSize::unknown() into
LocationSize::afterPointer() and LocationSize::beforeOrAfterPointer()
to make this completely unambiguous. I tried my best to determine
which one is appropriate for all the existing uses.
The test changes in cs-cs.ll in particular illustrate a previously
clearly incorrect AA result: We were effectively assuming that
argmemonly functions were only allowed to access their arguments
after the passed pointer, but not before it. I'm pretty sure that
this was not intentional, and it's certainly not specified by
LangRef that way.
Differential Revision: https://reviews.llvm.org/D91649
Test a few more variations:
* NoAlias with different strides
* MustAlias without loop
* MustAlias with same stride
* MustAlias base pointers with different stride
Similarly to assumes and guards deoptimize intrinsics are
marked as writing to ensure proper control dependencies
but they never modify any particular memory location.
Differential Revision: https://reviews.llvm.org/D91658
The GEP aliasing implementation currently has two pieces of code
that solve two different subsets of the same basic problem: If you
have GEPs with offsets 4*x + 0 and 4*y + 1 (assuming access size 1),
then they do not alias regardless of whether x and y are the same.
One implementation is in aliasSameBasePointerGEPs(), which looks at
this in a limited structural way. It requires both GEP base pointers
to be exactly the same, then (optionally) a number of equal indexes,
then an unknown index, then a non-equal index into a struct. This
set of limitations works, but it's overly restrictive and hides the
core property we're trying to exploit.
The second implementation is part of aliasGEP() itself and tries to
find a common modulus in the scales, so it can then check that the
constant offset doesn't overlap under modular arithmetic. The second
implementation has the right idea of what the general problem is,
but effectively only considers power of two factors in the scales
(while aliasSameBasePointerGEPs also works with non-pow2 struct sizes.)
What this patch does is to adjust the aliasGEP() implementation to
instead find the largest common factor in all the scales (i.e. the GCD)
and use that as the modulus.
Differential Revision: https://reviews.llvm.org/D91027
aliasGEP() currently implements some special handling for the case
where all variable offsets are positive, in which case the constant
offset can be taken as the minimal offset. However, it does not
perform the same handling for the all-negative case. This means that
the alias-analysis result between two GEPs is asymmetric:
If GEP1 - GEP2 is all-positive, then GEP2 - GEP1 is all-negative,
and the first will result in NoAlias, while the second will result
in MayAlias.
Apart from producing sub-optimal results for one order, this also
violates our caching assumption. In particular, if BatchAA is used,
the cached result depends on the order of the GEPs in the first query.
This results in an inconsistency in BatchAA and AA results, which
is how I noticed this issue in the first place.
Differential Revision: https://reviews.llvm.org/D91383
The GEP aliasing code currently checks for the GEP decomposition
limit being reached (i.e., we did not reach the "final" underlying
object). As far as I can see, these checks are not necessary. It is
perfectly fine to work with a GEP whose base can still be further
decomposed.
Looking back through the commit history, these checks were originally
introduced in 1a444489e9. However, I
believe that the problem this was intended to address was later
properly fixed with 1726fc698c, and
the checks are no longer necessary since then (and were not the
right fix in the first place).
Differential Revision: https://reviews.llvm.org/D91010