This is required to support RISC-V where the '+d' target feature
indicates the presence of the D instruction set extension, which
changes to the Hard-float 'd' ABI.
Differential Revision: https://reviews.llvm.org/D128853
In interactive C++ it is convenient to roll back to a previous state of the
compiler. For example:
clang-repl> int x = 42;
clang-repl> %undo
clang-repl> float x = 24 // not an error
To support this, the patch extends the functionality used to recover from
errors and adds functionality to recover the low-level execution infrastructure.
The current implementation is based on watermarks. It exploits the fact that
at each incremental input the underlying compiler infrastructure is in a valid
state. We can only go N incremental inputs back to a previous valid state. We do
not need and do not do any further dependency tracking.
This patch was co-developed with V. Vassilev, relies on the past work of Purva
Chaudhari in clang-repl and is inspired by the past work on the same feature
in the Cling interpreter.
Co-authored-by: Purva-Chaudhari <purva.chaudhari02@gmail.com>
Co-authored-by: Vassil Vassilev <v.g.vassilev@gmail.com>
Signed-off-by: Jun Zhang <jun@junz.org>
This patch will allow better incremental adoption of these changes in downstream
cling and other users which want to experiment by customizing the execution
engine.
Original commit message: "
Original commit message: "
Original commit message: "
Original commit message:"
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
"
This patch also ignores ppc due to missing weak symbol for __gxx_personality_v0
which may be a feature request for the jit infrastructure. Also, adds a missing
build system dependency to the orc jit.
"
Additionally, this patch defines a custom exception type and thus avoids the
requirement to include header <exception>, making it easier to deploy across
systems without standard location of the c++ headers.
"
This patch also works around PR49692 and finds a way to use llvm::consumeError
in rtti mode.
"
This patch also checks if stl is built with rtti.
Differential revision: https://reviews.llvm.org/D107049
Original commit message: "
Original commit message: "
Original commit message:"
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
Differential revision: https://reviews.llvm.org/D107049
"
This patch also ignores ppc due to missing weak symbol for __gxx_personality_v0
which may be a feature request for the jit infrastructure. Also, adds a missing
build system dependency to the orc jit.
"
Additionally, this patch defines a custom exception type and thus avoids the
requirement to include header <exception>, making it easier to deploy across
systems without standard location of the c++ headers.
"
This patch also works around PR49692 and finds a way to use llvm::consumeError
in rtti mode.
Differential revision: https://reviews.llvm.org/D107049
Original commit message: "
Original commit message:"
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
Differential revision: https://reviews.llvm.org/D107049
"
This patch also ignores ppc due to missing weak symbol for __gxx_personality_v0
which may be a feature request for the jit infrastructure. Also, adds a missing
build system dependency to the orc jit.
"
Additionally, this patch defines a custom exception type and thus avoids the
requirement to include header <exception>, making it easier to deploy across
systems without standard location of the c++ headers.
Differential revision: https://reviews.llvm.org/D107049
Original commit message:"
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
Differential revision: https://reviews.llvm.org/D107049
"
This patch also ignores ppc due to missing weak symbol for __gxx_personality_v0
which may be a feature request for the jit infrastructure. Also, adds a missing
build system dependency to the orc jit.
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
Differential revision: https://reviews.llvm.org/D107049
Some systems use a different data layout. For instance, s390x the layout of
machines with vector registers is different from the ones without. In such
cases, the JIT will automatically detect the vector registers and go out of
sync.
This patch tells the JIT what is the target triple of the generated code so that
both ends are in sync.
Discussion available in https://reviews.llvm.org/D96033. Thanks to @uweigand for
helping understand the issue.
Differential revision https://reviews.llvm.org/D102756
Original commit message:
In http://lists.llvm.org/pipermail/llvm-dev/2020-July/143257.html we have
mentioned our plans to make some of the incremental compilation facilities
available in llvm mainline.
This patch proposes a minimal version of a repl, clang-repl, which enables
interpreter-like interaction for C++. For instance:
./bin/clang-repl
clang-repl> int i = 42;
clang-repl> extern "C" int printf(const char*,...);
clang-repl> auto r1 = printf("i=%d\n", i);
i=42
clang-repl> quit
The patch allows very limited functionality, for example, it crashes on invalid
C++. The design of the proposed patch follows closely the design of cling. The
idea is to gather feedback and gradually evolve both clang-repl and cling to
what the community agrees upon.
The IncrementalParser class is responsible for driving the clang parser and
codegen and allows the compiler infrastructure to process more than one input.
Every input adds to the “ever-growing” translation unit. That model is enabled
by an IncrementalAction which prevents teardown when HandleTranslationUnit.
The IncrementalExecutor class hides some of the underlying implementation
details of the concrete JIT infrastructure. It exposes the minimal set of
functionality required by our incremental compiler/interpreter.
The Transaction class keeps track of the AST and the LLVM IR for each
incremental input. That tracking information will be later used to implement
error recovery.
The Interpreter class orchestrates the IncrementalParser and the
IncrementalExecutor to model interpreter-like behavior. It provides the public
API which can be used (in future) when using the interpreter library.
Differential revision: https://reviews.llvm.org/D96033
This reverts commit 44a4000181.
We are seeing build failures due to missing dependency to libSupport and
CMake Error at tools/clang/tools/clang-repl/cmake_install.cmake
file INSTALL cannot find
In http://lists.llvm.org/pipermail/llvm-dev/2020-July/143257.html we have
mentioned our plans to make some of the incremental compilation facilities
available in llvm mainline.
This patch proposes a minimal version of a repl, clang-repl, which enables
interpreter-like interaction for C++. For instance:
./bin/clang-repl
clang-repl> int i = 42;
clang-repl> extern "C" int printf(const char*,...);
clang-repl> auto r1 = printf("i=%d\n", i);
i=42
clang-repl> quit
The patch allows very limited functionality, for example, it crashes on invalid
C++. The design of the proposed patch follows closely the design of cling. The
idea is to gather feedback and gradually evolve both clang-repl and cling to
what the community agrees upon.
The IncrementalParser class is responsible for driving the clang parser and
codegen and allows the compiler infrastructure to process more than one input.
Every input adds to the “ever-growing” translation unit. That model is enabled
by an IncrementalAction which prevents teardown when HandleTranslationUnit.
The IncrementalExecutor class hides some of the underlying implementation
details of the concrete JIT infrastructure. It exposes the minimal set of
functionality required by our incremental compiler/interpreter.
The Transaction class keeps track of the AST and the LLVM IR for each
incremental input. That tracking information will be later used to implement
error recovery.
The Interpreter class orchestrates the IncrementalParser and the
IncrementalExecutor to model interpreter-like behavior. It provides the public
API which can be used (in future) when using the interpreter library.
Differential revision: https://reviews.llvm.org/D96033