Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278077
Summary:
The correctness fix here is that when we CSE a load with another load,
we need to combine the metadata on the two loads. This matches the
behavior of other passes, like instcombine and GVN.
There's also a minor optimization improvement here: for load PRE, the
aliasing metadata on the inserted load should be the same as the
metadata on the original load. Not sure why the old code was throwing
it away.
Issue found by inspection.
Differential Revision: http://reviews.llvm.org/D21460
llvm-svn: 277977
Note that this fold really belongs in InstSimplify.
Refactoring here anyway as an intermediate step because
there's a planned addition to this function in D23134.
Differential Revision: https://reviews.llvm.org/D23223
llvm-svn: 277883
Summary:
Turn (select C, (sext A), B) into (sext (select C, A, B')) when A is i1 and
B is a compatible constant, also for zext instead of sext. This will then be
further folded into logical operations.
The transformation would be valid for non-i1 types as well, but other parts of
InstCombine prefer to have sext from non-i1 as an operand of select.
Motivated by the shader compiler frontend in Mesa for AMDGPU, which emits i32
for boolean operations. With this change, the boolean logic is fully
recovered.
Reviewers: majnemer, spatel, tstellarAMD
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22747
llvm-svn: 277801
Add a generalized IRBuilderCallbackInserter, which is just given a
callback to execute after insertion. This can be used to get rid of
the custom inserter in InstCombine, which will in turn allow me to add
target specific InstCombineCalls API for intrinsics without horrible
layering violations.
llvm-svn: 277784
I'm removing a misplaced pair of more specific folds from InstCombine in this patch as well,
so we know where those folds are happening in InstSimplify.
llvm-svn: 277738
Summary:
InstCombine unfolds expressions of the form `zext(or(icmp, icmp))` to `or(zext(icmp), zext(icmp))` such that in a later iteration of InstCombine the exposed `zext(icmp)` instructions can be optimized. We now combine this unfolding and the subsequent `zext(icmp)` optimization to be performed together. Since the unfolding doesn't happen separately anymore, we also again enable the folding of `logic(cast(icmp), cast(icmp))` expressions to `cast(logic(icmp, icmp))` which had been disabled due to its interference with the unfolding transformation.
Tested via `make check` and `lnt`.
Background
==========
For a better understanding on how it came to this change we subsequently summarize its history. In commit r275989 we've already tried to enable the folding of `logic(cast(icmp), cast(icmp))` to `cast(logic(icmp, icmp))` which had to be reverted in r276106 because it could lead to an endless loop in InstCombine (also see http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160718/374347.html). The root of this problem is that in `visitZExt()` in InstCombineCasts.cpp there also exists a reverse of the above folding transformation, that unfolds `zext(or(icmp, icmp))` to `or(zext(icmp), zext(icmp))` in order to expose `zext(icmp)` operations which would then possibly be eliminated by subsequent iterations of InstCombine. However, before these `zext(icmp)` would be eliminated the folding from r275989 could kick in and cause InstCombine to endlessly switch back and forth between the folding and the unfolding transformation. This is the reason why we now combine the `zext`-unfolding and the elimination of the exposed `zext(icmp)` to happen at one go because this enables us to still allow the cast-folding in `logic(cast(icmp), cast(icmp))` without entering an endless loop again.
Details on the submitted changes
================================
- In `visitZExt()` we combine the unfolding and optimization of `zext` instructions.
- In `transformZExtICmp()` we have to use `Builder->CreateIntCast()` instead of `CastInst::CreateIntegerCast()` to make sure that the new `CastInst` is inserted in a `BasicBlock`. The new calls to `transformZExtICmp()` that we introduce in `visitZExt()` would otherwise cause according assertions to be triggered (in our case this happend, for example, with lnt for the MultiSource/Applications/sqlite3 and SingleSource/Regression/C++/EH/recursive-throw tests). The subsequent usage of `replaceInstUsesWith()` is necessary to ensure that the new `CastInst` replaces the `ZExtInst` accordingly.
- In InstCombineAndOrXor.cpp we again allow the folding of casts on `icmp` instructions.
- The instruction order in the optimized IR for the zext-or-icmp.ll test case is different with the introduced changes.
- The test cases in zext.ll have been adopted from the reverted commits r275989 and r276105.
Reviewers: grosser, majnemer, spatel
Subscribers: eli.friedman, majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D22864
Contributed-by: Matthias Reisinger <d412vv1n@gmail.com>
llvm-svn: 277635
This removes the restriction for the icmp constant, but as noted by the FIXME comments,
we still need to change individual checks for binop operand constants.
llvm-svn: 277629
A ConstantVector can have ConstantExpr operands and vice versa.
However, the folder had no ability to fold ConstantVectors which, in
some cases, was an optimization barrier.
Instead, rephrase the folder in terms of Constants instead of
ConstantExprs and teach callers how to deal with failure.
llvm-svn: 277099
Summary:
Asan stack-use-after-scope check should poison alloca even if there is
no access between start and end.
This is possible for code like this:
for (int i = 0; i < 3; i++) {
int x;
p = &x;
}
"Loop Invariant Code Motion" will move "p = &x;" out of the loop, making
start/end range empty.
PR27453
Reviewers: eugenis
Differential Revision: https://reviews.llvm.org/D22842
llvm-svn: 277072
Summary:
Asan stack-use-after-scope check should poison alloca even if there is
no access between start and end.
This is possible for code like this:
for (int i = 0; i < 3; i++) {
int x;
p = &x;
}
"Loop Invariant Code Motion" will move "p = &x;" out of the loop, making
start/end range empty.
PR27453
Reviewers: eugenis
Differential Revision: https://reviews.llvm.org/D22842
llvm-svn: 277068
Just because we can constant fold the result of an instruction does not
imply that we can delete the instruction. It may have side effects.
This fixes PR28655.
llvm-svn: 276389
Making smaller pieces out of some of these ~1000 line functions should make
it easier to incrementally upgrade them to handle vector types.
llvm-svn: 276304
As noted in https://reviews.llvm.org/D22537 , we can use this functionality in
visitSelectInstWithICmp() and InstSimplify, but currently we have duplicated
code.
llvm-svn: 276140
The pattern may look more obviously like a sext if written as:
define i32 @g(i16 %x) {
%zext = zext i16 %x to i32
%xor = xor i32 %zext, 32768
%add = add i32 %xor, -32768
ret i32 %add
}
We already have that fold in visitAdd().
Differential Revision: https://reviews.llvm.org/D22477
llvm-svn: 276035
Summary:
Currently, InstCombine is already able to fold expressions of the form `logic(cast(A), cast(B))` to the simpler form `cast(logic(A, B))`, where logic designates one of `and`/`or`/`xor`. This transformation is implemented in `foldCastedBitwiseLogic()` in InstCombineAndOrXor.cpp. However, this optimization will not be performed if both `A` and `B` are `icmp` instructions. The decision to preclude casts of `icmp` instructions originates in r48715 in combination with r261707, and can be best understood by the title of the former one:
> Transform (zext (or (icmp), (icmp))) to (or (zext (cimp), (zext icmp))) if at least one of the (zext icmp) can be transformed to eliminate an icmp.
Apparently, it introduced a transformation that is a reverse of the transformation that is done in `foldCastedBitwiseLogic()`. Its purpose is to expose pairs of `zext icmp` that would subsequently be optimized by `transformZExtICmp()` in InstCombineCasts.cpp. Therefore, in order to avoid an endless loop of switching back and forth between these two transformations, the one in `foldCastedBitwiseLogic()` has been restricted to exclude `icmp` instructions which is mirrored in the responsible check:
`if ((!isa<ICmpInst>(Cast0Src) || !isa<ICmpInst>(Cast1Src)) && ...`
This check seems to sort out more cases than necessary because:
- the reverse transformation is obviously done for `or` instructions only
- and also not every `zext icmp` pair is necessarily the result of this reverse transformation
Therefore we now remove this check and replace it by a more finegrained one in `shouldOptimizeCast()` that now rejects only those `logic(zext(icmp), zext(icmp))` that would be able to be optimized by `transformZExtICmp()`, which also avoids the mentioned endless loop. That means we are now able to also simplify expressions of the form `logic(cast(icmp), cast(icmp))` to `cast(logic(icmp, icmp))` (`cast` being an arbitrary `CastInst`).
As an example, consider the following IR snippet
```
%1 = icmp sgt i64 %a, %b
%2 = zext i1 %1 to i8
%3 = icmp slt i64 %a, %c
%4 = zext i1 %3 to i8
%5 = and i8 %2, %4
```
which would now be transformed to
```
%1 = icmp sgt i64 %a, %b
%2 = icmp slt i64 %a, %c
%3 = and i1 %1, %2
%4 = zext i1 %3 to i8
```
This issue became apparent when experimenting with the programming language Julia, which makes use of LLVM. Currently, Julia lowers its `Bool` datatype to LLVM's `i8` (also see https://github.com/JuliaLang/julia/pull/17225). In fact, the above IR example is the lowered form of the Julia snippet `(a > b) & (a < c)`. Like shown above, this may introduce `zext` operations, casting between `i1` and `i8`, which could for example hinder ScalarEvolution and Polly on certain code.
Reviewers: grosser, vtjnash, majnemer
Subscribers: majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D22511
Contributed-by: Matthias Reisinger
llvm-svn: 275989
Summary:
This patch cleans up parts of InstCombine to raise its compliance with the LLVM coding standards and to increase its readability. The changes and according rationale are summarized in the following:
- Rename `ShouldOptimizeCast()` to `shouldOptimizeCast()` since functions should start with a lower case letter.
- Move `shouldOptimizeCast()` from InstCombineCasts.cpp to InstCombineAndOrXor.cpp since it's only used there.
- Simplify interface of `shouldOptimizeCast()`.
- Minor code style adaptions in `shouldOptimizeCast()`.
- Remove the documentation on the function definition of `shouldOptimizeCast()` since it just repeats the documentation on its declaration. Also enhance the documentation on its declaration with more information describing its intended use and make it doxygen-compliant.
- Change a comment in `foldCastedBitwiseLogic()` from `fold (logic (cast A), (cast B)) -> (cast (logic A, B))` to `fold logic(cast(A), cast(B)) -> cast(logic(A, B))` since the surrounding comments use this format.
- Remove comment `Only do this if the casts both really cause code to be generated.` in `foldCastedBitwiseLogic()` since it just repeats parts of the documentation of `shouldOptimizeCast()` and does not help to improve readability.
- Simplify the interface of `isEliminableCastPair()`.
- Removed the documentation on the function definition of `isEliminableCastPair()` which only contained obvious statements about its implementation. Instead added more general doxygen-compliant documentation to its declaration.
- Renamed parameter `DoXform` of `transformZExtIcmp()` to `DoTransform` to make its intention clearer.
- Moved documentation of `transformZExtIcmp()` from its definition to its declaration and made it doxygen-compliant.
Reviewers: vtjnash, grosser
Subscribers: majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D22449
Contributed-by: Matthias Reisinger
llvm-svn: 275964
This is a partial implementation of a general fold for associative+commutative operators:
(op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
(op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
There are 7 associative operators and 13 cast types, so this could potentially go a lot further.
Differential Revision: https://reviews.llvm.org/D22421
llvm-svn: 275684
We were able to fold masked loads with an all-ones mask to a normal
load. However, we couldn't turn a masked load with a mask with mixed
ones and undefs into a normal load.
llvm-svn: 275380
In D21740, we discussed trying to make this a more general matcher. However, I didn't see a clean
way to handle the regular m_Not cases and these non-splat vector patterns, so I've opted for the
direct approach here. If there are other potential uses of areInverseVectorBitmasks(), we could
move that helper function to a higher level.
There is an open question as to which is of these forms should be considered the canonical IR:
%sel = select <4 x i1> <i1 true, i1 false, i1 false, i1 true>, <4 x i32> %a, <4 x i32> %b
%shuf = shufflevector <4 x i32> %a, <4 x i32> %b, <4 x i32> <i32 0, i32 5, i32 6, i32 3>
Differential Revision: http://reviews.llvm.org/D22114
llvm-svn: 275289
This isn't a sure thing (are 2 extra bitcasts less expensive than a logic op?),
but we'll try to err on the conservative side by going with the case that has
less IR instructions.
Note: This question came up in http://reviews.llvm.org/D22114 , but this part is
independent of that patch proposal, so I'm making this small change ahead of that
one.
See also:
http://reviews.llvm.org/rL274926
llvm-svn: 274932