BtVer2 - fix NumMicroOp and account for the Lat+6cy GPR->XMM and Lat+1cy XMm->GPR delays (see rL332737)
The high number of MOVD/MOVQ equivalent instructions meant that there were a number of missed patterns in SNB/Znver1:
SNB - add missing GPR<->MMX costs (taken from Agner / Intel AOM)
Znver1 - add missing GPR<->XMM MOVQ costs (taken from Agner)
llvm-svn: 332745
Retag some instructions that were missed when we split off vector load/store/moves - MOVQ/MOVD etc.
Fixes BtVer2/SLM which have different behaviours for GPR stores.
llvm-svn: 332718
A lot of the models still have too many InstRW overrides for these new classes - this needs cleaning up but I wanted to get the classes in first
llvm-svn: 332451
This took a bit of extra work as on Intel targets the old (V)PSLLDrr/(V)PSLLDrm style instructions act differently - I ended up creating WriteVecShiftImm classes for XMM/YMM/ZMM vector shift by immediate and retaining WriteVecShift as the default (used only by MMX) plus WriteVecShiftX/WriteVecShiftY. X86SchedWriteWidths hides most of this thank goodness.
llvm-svn: 331472
Split off pinsr/pextr and extractps instructions.
(Mostly) fixes PR36887.
Note: It might be worth adding a WriteFInsertLd class as well in the future.
Differential Revision: https://reviews.llvm.org/D45929
llvm-svn: 330714
Currently MOVMSK instructions use the WriteVecLogic class, which is a very poor choice given that MOVMSK involves a SSE->GPR transfer.
Differential Revision: https://reviews.llvm.org/D44924
llvm-svn: 328664
We only tagged it with the itinerary class, so completeness checks were erroneously passed (PR35639).
AMD targets can perform these a lot quicker than WriteMicrocoded so will need an override in the models.
llvm-svn: 324897
MMX instrutions all start with MMX_ so the 64 isn't needed for disambigutation.
SSE/AVX1 instructions are assumed 128-bit so we don't need to say 128.
AVX2 instructions should use a Y to indicate 256-bits.
llvm-svn: 323402
As mentioned on PR35869, (and came up recently on D41517) we don't create a MMX zero register via the PXOR but instead perform a spill to stack from a XMM zero register.
This patch adds support for direct MMX zero vector creation and should make it easier to add better constant vector creation in the future as well.
Differential Revision: https://reviews.llvm.org/D41908
llvm-svn: 322525
This behavior existed to work with an old version of the gnu assembler on MacOS that only accepted this form. Newer versions of GNU assembler and the current LLVM derived version of the assembler on MacOS support movq as well.
llvm-svn: 321898
Summary: Just like the FIXME says, there is no alignment requirement for MMX.
Reviewers: RKSimon, zvi, igorb
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36815
llvm-svn: 311090
Some register-register instructions can be encoded in 2 different ways, this happens when 2 register operands can be folded (separately).
For example if we look at the MOV8rr and MOV8rr_REV, both instructions perform exactly the same operation, but are encoded differently. Here is the relevant information about these instructions from Intel's 64-ia-32-architectures-software-developer-manual:
Opcode Instruction Op/En 64-Bit Mode Compat/Leg Mode Description
8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8.
88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8.
Here we can see that in order to enable the folding of the output and input registers, we had to define 2 "encodings", and as a result we got 2 move 8-bit register-register instructions.
In the X86 backend, we define both of these instructions, usually one has a regular name (MOV8rr) while the other has "_REV" suffix (MOV8rr_REV), must be marked with isCodeGenOnly flag and is not emitted from CodeGen.
Automatically generating the memory folding tables relies on matching encodings of instructions, but in these cases where we want to map both memory forms of the mov 8-bit (MOV8rm & MOV8mr) to MOV8rr (not to MOV8rr_REV) we have to somehow point from the MOV8rr_REV to the "regular" appropriate instruction which in this case is MOV8rr.
This field enable this "pointing" mechanism - which is used in the TableGen backend for generating memory folding tables.
Differential Revision: https://reviews.llvm.org/D32683
llvm-svn: 304087
We currently perform the various fp_to_sint XMM conversion and then transfer to the MMX register (on 32-bit via the stack).
This patch improves support for MOVDQ2Q XMM to MMX transfers and adds the XMM->MMX fp_to_sint direct conversion patterns. The SSE2 specifications are the same as for XMM->XMM and XMM->MMX rounding/exceptions/etc.
Differential Revision: https://reviews.llvm.org/D30868
llvm-svn: 298943
rL230225 made the assumption that only the lower 32-bits of an MMX register load is used as a shift value, when in fact the whole 64-bits are reloaded and treated as a i64 to determine the shift value.
This patch reverts rL230225 to ensure that the whole 64-bits of memory are folded and ensures that the upper 32-bit are zero'd for cases where the shift value has come from a scalar source.
Found during fuzz testing.
Differential Revision: https://reviews.llvm.org/D30833
llvm-svn: 297667
These are redundant pairs of nodes defined for
INSERT_VECTOR_ELEMENT/EXTRACT_VECTOR_ELEMENT.
insertelement/extractelement are slightly closer to the corresponding
C++ node name, and has stricter type checking so prefer it.
Update targets to only use these nodes where it is trivial to do so.
AArch64, ARM, and Mips all have various type errors on simple replacement,
so they will need work to fix.
Example from AArch64:
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
(i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
Which is trying to do sext_inreg i8, i8.
llvm-svn: 255359
Reintroduce r245442. Remove an overly conservative assertion introduced
in r245442. We could replace the assertion to use `shareSameRegisterFile`
instead, but in that point in `insertPHI` we already lost the original
Def subreg to check against. So drop the assertion completely.
Original commit message:
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
llvm-svn: 245479
Reapply r243486.
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
llvm-svn: 245442
Reapply 243271 with more fixes; although we are not handling multiple
sources with coalescable copies, we were not properly skipping this
case.
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
llvm-svn: 243486
Reapply r242295 with fixes in the implementation.
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
llvm-svn: 243271
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
llvm-svn: 242295
MMX_MOVD64rm zero-extends i32 load results into i64 registers.
The peephole optimizer will try to fold it in other MMX foldable
instructions, the wrong thing to do, since there's no MMX memory
instruction that loads from i32 and does implict zero extension.
Remove 'canFoldAsLoad' from MOVD64rm in order to prevent such folding.
The current MMX tests already test this, but since there are no MMX
instructions in the foldable tables yet, this did not trigger. This
commit prepares the addition of those instructions.
llvm-svn: 230498