The special case of zero sized values was previously not handled correctly.
This patch handles this by not promoting if the size is zero.
Patch by Tim Neumann.
Differential Revision: https://reviews.llvm.org/D31116
llvm-svn: 298320
and mark the methods as protected.
Besides reducing the surface area of DwarfExpression, this is in
preparation for an upcoming bugfix in the DwarfExpression
implementation, for which it will be necessary to defer emitting
register operations until the rest of the expression is known.
NFC
llvm-svn: 298309
Make x86_64-fuchsia targets under -mcmodel=kernel use %gs rather
than %fs to access ABI slots for stack-protector and safe-stack
Patch by Roland McGrath.
Differential Revision: https://reviews.llvm.org/D30870
llvm-svn: 298302
If loop bound containing calculations like min(a,b), the Scalar
Evolution API getSmallConstantTripMultiple returns 4294967295 "-1"
as the trip multiple. The problem is that, SCEV use -1 * umax to
represent umin. The multiple constant -1 was returned, and the logic
of guarding against huge trip counts was skipped. Because -1 has 32
active bits.
The fix attempt to factor more general cases. First try to get the
greatest power of two divisor of trip count expression. In case
overflow happens, the trip count expression is still divisible by the
greatest power of two divisor returned. Returns 1 if not divisible by 2.
Patch by Huihui Zhang <huihuiz@codeaurora.org>
Differential Revision: https://reviews.llvm.org/D30840
llvm-svn: 298301
and test cases for each of the error checks.
To do this more plumbing was needed so that the segment indexes and
segment offsets can be checked. Basically what was done was the SegInfo
from llvm-objdump’s MachODump.cpp was moved into libObject for Mach-O
objects as BindRebaseSegInfo and it is only created when an iterator for
bind or rebase entries are created.
This commit really only adds the error checking and test cases for the
bind table entires and the checking for the lazy bind and weak bind entries
are still to be fully done as well as the rebase entires. Though some of
the plumbing for those are added with this commit. Those other error
checks and test cases will be added in follow on commits.
Note, the two llvm_unreachable() calls should now actually be unreachable
with the error checks in place and would take a logic bug in the error
checking code to be reached if the segment indexes and segment
offsets are used from a checked bind entry. Comments have been added
to the methods that require the arguments to have been checked
prior to calling.
llvm-svn: 298292
Regain the ability to recognize loops calculating polynomial modulo
operation. This ability has been lost due to some changes in the
preceding optimizations. Add code to preprocess the IR to a form
that the pattern matching code can recognize.
llvm-svn: 298282
Move the check for "MF->hasWinCFI()" up into the calculation of the
shouldEmitMoves boolean, rather than putting it in the early returning
if. This ensures that endFunction doesn't try to emit .seh_* directives
for leaf functions.
llvm-svn: 298276
This is a safeguard against data loss if the user specifies a directory
that is not a cache directory. Teach the existing cache pruning clients
to create files with appropriate names.
Differential Revision: https://reviews.llvm.org/D31109
llvm-svn: 298271
Summary: Inliner should update the branch_weights annotation to scale it to proper value.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D30767
llvm-svn: 298270
InstCombine tries to constant fold instruction operands during worklist building, but we don't print that we're doing this.
We also set a change flag here that causes us to rebuild and rerun the worklist one more time even if processing the worklist itself created no additional changes. So in the log I saw two inst combine runs that visited all instructions without printing that anything was changed. I may be submitting another patch to remove the change flag unless I can find some reason why we should be doing that.
Differential Revision: https://reviews.llvm.org/D31091
llvm-svn: 298264
NFCI.
Summary:
This is ground work for the changes to enable coercion in NewGVN.
GVN doesn't care if they end up constant because it eliminates as it goes.
NewGVN cares.
IRBuilder and ConstantFolder deliberately present the same interface,
so we use this to our advantage to templatize our functions to make
them either constant only or not.
Reviewers: davide
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30928
llvm-svn: 298262
Forgot to remove some output before committing last time. (Instruction fixups
don't actually overflow anywhere in the test suite so far, so I missed it).
To prevent the outliner from screaming "Overflow!" in the event that that
does happen, this commit removes that output.
llvm-svn: 298260
This commit adds a parameter that lets us pass in the calling convention
of the call to CallLowering::lowerCall. This allows us to handle
situations where the calling convetion of the callee is different from
that of the caller.
Differential Revision: https://reviews.llvm.org/D31039
llvm-svn: 298254
Summary:
ConstantRange class currently has a method getSetSize, which is mostly used to
compare set sizes of two constant ranges (there is only one spot where it's used
in a slightly different scenario). This patch introduces setSizeSmallerThanOf
method, which does such comparison in a more efficient way. In the original
method we have to extend our types to (BitWidth+1), which can result it using
slow case of APInt, extra memory allocations, etc.
The change is supposed to not change any functionality, but it slightly improves
compile time. Here is compile time improvements that I observed on CTMark:
* tramp3d-v4 -2.02%
* pairlocalalign -1.82%
* lencod -1.67%
Reviewers: sanjoy, atrick, pete
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31104
llvm-svn: 298236
I'm not sure if zeroing VAL before writing pVal is really necessary, but at least one other place did it in code.
But by taking the store out of line, this reduces the opt binary by about 20k on my local x86-64 build.
llvm-svn: 298233
Summary: This Idom check seems unnecessary. The immediate children of a node on the Dominator Tree should always be the IDom of its immediate children in this case.
Reviewers: hfinkel, majnemer, dberlin
Reviewed By: dberlin
Subscribers: dberlin, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D26954
llvm-svn: 298232
Summary:
Currently we handle these intrinsics at isel with special patterns. But as they just map to normal logic operations, we should just handle them at lowering. This will expose them to DAG combine optimizations. Right now the kor-sequence test generates a bunch of regclass copies between GR16 and VK16 that the peephole optimizer and/or register coallescing are removing to keep everything in the mask domain. By handling the logic op intrinsics earlier, these copies become bitcasts in the DAG and get removed by DAG combine which seems more robust.
This should help enable my plan to stop copying between K registers and GR8/GR16. The peephole optimizer can't remove a chain of copies between K and GR32 with insert_subreg/extract_subreg present in the chain so the kor-sequence test break. But this patch should dodge the problem entirely.
Reviewers: zvi, delena, RKSimon, igorb
Reviewed By: igorb
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31056
llvm-svn: 298228
We make the assumption in most of our constant folding code that a fp2int will target an integer of 128-bits or less, calling the APFloat::convertToInteger with only uint64_t[2] of raw bits for the result.
Fuzz testing (PR24662) showed that we don't handle other cases at all, resulting in stack overflows and all sorts of crashes.
This patch uses the APSInt version of APFloat::convertToInteger instead to better handle such cases.
Differential Revision: https://reviews.llvm.org/D31074
llvm-svn: 298226
Folding instructions when selecting can cause them to become dead.
Don't select these dead instructions (if they don't have other side
effects, and don't define physical registers).
Preserve existing tests by adding COPYs.
In some tests, the G_CONSTANT vregs never get constrained to a class:
the only use of the vreg was folded into another instruction, so the
G_CONSTANT, now dead, never gets selected.
llvm-svn: 298224
Summary:
In case we are loading on a phi-load in SimplifyPartiallyRedundantLoad.
Try to phi translate it into incoming values in the predecessors before
we search for available loads.
This needs https://reviews.llvm.org/D30524
Reviewers: davide, sanjoy, efriedma, dberlin, rengolin
Reviewed By: dberlin
Subscribers: junbuml, llvm-commits
Differential Revision: https://reviews.llvm.org/D30543
llvm-svn: 298217
Summary:
Extract FindAvailablePtrLoadStore out of FindAvailableLoadedValue.
Prepare for upcoming change which will do phi-translation for load on
phi pointer in jump threading SimplifyPartiallyRedundantLoad.
This is in preparation for https://reviews.llvm.org/D30543
Reviewers: efriedma, sanjoy, davide, dberlin
Reviewed By: davide
Subscribers: junbuml, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D30524
llvm-svn: 298216
Summary:
I found that stripDebugInfo was still leaving significant amounts of
debug info due to !llvm.loop that contained DILocation after stripping.
The support for stripping debug info on !llvm.loop added in r293377 only
removes a single DILocation. Enhance that to remove all DILocation from
!llvm.loop.
Reviewers: hfinkel, aprantl, dsanders
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31117
llvm-svn: 298213
The MIR printer dumps a string that describe the register mask of a function.
A static predefined list of register masks matches a static list of strings.
However when the register mask is not from the static predefined list, there is no descriptor string and the printer fails.
This patch adds support to custom register mask printing and dumping.
Also the list of callee saved registers (describing the registers that must be preserved for the caller) might be dynamic.
As such this data needs to be dumped and parsed back to the Machine Register Info.
Differential Revision: https://reviews.llvm.org/D30971
llvm-svn: 298207
Summary:
The reverse of an artbitrary bitpattern is also an arbitrary
bitpattern.
Reviewers: trentxintong, arsenm, majnemer
Reviewed By: majnemer
Subscribers: majnemer, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D31118
llvm-svn: 298201