There are 65 that take a scalar shift amount. Intel documentation shows 60 of them taking unsigned int. There are 5 versions of srli_epi16 that use int, the 512-bit maskz and 128/256 mask/maskz.
Fixes PR45931
Differential Revision: https://reviews.llvm.org/D80251
This removes everything but int_x86_avx512_mask_vcvtph2ps_512 which provides the SAE variant, but even this can use the fpext generic if the rounding control is the default.
Differential Revision: https://reviews.llvm.org/D75162
Previously we emitted an fmadd and a fmadd+fneg and combined them with a shufflevector. But this doesn't follow the correct exception behavior for unselected elements so the backend can't merge them into the fmaddsub/fmsubadd instructions.
This patch restores the the fmaddsub intrinsics so we don't have two arithmetic operations. We lose out on optimization opportunity in the non-strict FP case, but I don't think this is a big loss. If someone gives us a test case we can look into adding instcombine/dagcombine improvements. I'd rather not have the frontend do completely different things for strict and non-strict.
This still has problems because target specific intrinsics don't support strict semantics yet. We also still have all of the problems with masking. But we at least generate the right instruction in constrained mode now.
Differential Revision: https://reviews.llvm.org/D74268
This patch changes the following tests to run under the new pass manager only:
```
Clang :: CodeGen/avx512-reduceMinMaxIntrin.c (1 of 4)
Clang :: CodeGen/avx512vl-builtins.c (2 of 4)
Clang :: CodeGen/avx512vlbw-builtins.c (3 of 4)
Clang :: CodeGen/avx512f-builtins.c (4 of 4)
```
The new PM added extra bitcasts that weren't checked before. For
reduceMinMaxIntrin.c, the issue was mostly the alloca's being in a different
order. Other changes involved extra bitcasts, and differently ordered loads and
stores, but the logic should still be the same.
Differential revision: https://reviews.llvm.org/D65110
llvm-svn: 367157
_MM_FROUND_CUR_DIRECTION is the behavior of the intrinsics that
don't take a rounding mode argument. So a better test
is using _MM_FROUND_NO_EXC with the SAE only intrinsics and
an explicit rounding mode with the intrinsics that support
embedded rounding mode.
llvm-svn: 364127
These intrinsics should always take an immediate for the rounding mode.
The base instruction comes from before EVEX embdedded rounding. The
user should always provide the immediate rather than us assuming
CUR_DIRECTION.
Make the 512-bit versions also explicit aliases instead of copy
pasting the code.
llvm-svn: 363961
We need to custom handle these so we can turn the scalar mask into a vXi1 vector.
Differential Revision: https://reviews.llvm.org/D56530
llvm-svn: 351390
As noted on PR40203, for gcc compatibility we need to support non-immediate values in the 'slli/srli/srai' shift by immediate vector intrinsics.
llvm-svn: 350619
This patch lowers the _mm[256|512]_cvtepi{64|32|16}_epi{32|16|8} intrinsics to
native IR in cases where the result's length is less than 128 bits.
The resulting IR for 256-bit inputs is folded into VPMOV instructions, while for
128-bit inputs the vpshufb (or, in the 64-to-32-bit case, vinsertps)
instructions are generated instead
Differential Revision: https://reviews.llvm.org/D48712
llvm-svn: 336643
Shufflevector is easier to generate and matches what the backend pattern matches without relying on constant selects being turned into shuffles.
While I was there I also made the IR regular expressions a little stricter to ensure operand order on the shuffle.
llvm-svn: 336388
This patch removes on optimization used with the TRUE/FALSE
predicates, as was suggested in https://reviews.llvm.org/D45616
for r335339.
The optimization was buggy, since r335339 used it also
for *_mask builtins, without actually applying the mask -- the
mask argument was just ignored.
Reviewers: craig.topper, uriel.k, RKSimon, andrew.w.kaylor, spatel, scanon, efriedma
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D48715
llvm-svn: 336355
Add test cases with each predicate using the following
intrinsics:
_mm_cmp_pd
_mm_cmp_ps
_mm256_cmp_pd
_mm256_cmp_ps
_mm_cmp_pd_mask
_mm_cmp_ps_mask
_mm256_cmp_pd_mask
_mm256_cmp_ps_mask
_mm512_cmp_pd_mask
_mm512_cmp_ps_mask
_mm_mask_cmp_pd_mask
_mm_mask_cmp_ps_mask
_mm256_mask_cmp_pd_mask
_mm256_mask_cmp_ps_mask
_mm512_mask_cmp_pd_mask
_mm512_mask_cmp_ps_mask
Some of these are marked with FIXME, as there is bug in lowering
e.g. _mm512_mask_cmp_ps_mask.
llvm-svn: 336346
All of these found by grepping through IR from the builtin tests for extra trunc and zext/sext instructions that shouldn't have been there.
Some of these were real bugs where we lost bits from the user input:
_mm512_mask_broadcast_f32x8
_mm512_maskz_broadcast_f32x8
_mm512_mask_broadcast_i32x8
_mm512_maskz_broadcast_i32x8
_mm256_mask_cvtusepi16_storeu_epi8
llvm-svn: 336042
Summary: We've had these target independent intrinsics for at least a year and a half. Looks like they do exactly what we need here and the backend already supports them.
Reviewers: RKSimon, delena, spatel, GBuella
Reviewed By: RKSimon
Subscribers: cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D47693
llvm-svn: 334366
Test changes are due to differences in how we generate undef elements now. We also changed the types used for extractf128_si256/insertf128_si256 to match the signature of the builtin that previously existed which this patch resurrects. This also matches gcc.
llvm-svn: 334261
This patch replaces all packed (and scalar without rounding
mode) fused intrinsics with fmadd/fmaddsub variations.
Then fmadd/fmaddsub are lowered to native IR.
Patch by tkrupa
Reviewers: craig.topper, sroland, spatel, RKSimon
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D47444
llvm-svn: 333555
Because the intrinsics in the headers are implemented as macros, we can't just use a select builtin and pternlog builtin. This would require one of the macro arguments to be used twice. Depending on what was passed to the macro we could expand an expression twice leading to weird behavior. We could maybe declare our local variable in the macro, but that would need to worry about name collisions.
To avoid that just generate IR directly in CGBuiltin.cpp.
Differential Revision: https://reviews.llvm.org/D47125
llvm-svn: 332891
I believe this is safe assuming default default FP environment. The conversion might be inexact, but it can never overflow the FP type so this shouldn't be undefined behavior for the uitofp/sitofp instructions.
We already do something similar for scalar conversions.
Differential Revision: https://reviews.llvm.org/D46863
llvm-svn: 332882
As long as the destination type is a 256 or 128 bit vector with the same number of elements we can use __builtin_convertvector to directly generate trunc IR instruction which will be handled natively by the backend.
Differential Revision: https://reviews.llvm.org/D46742
llvm-svn: 332266
The unmasked versions already didn't have this restrction. I don't think gcc or icc limit these to 64-bit mode so we shouldn't either.
llvm-svn: 330681
I believe all the pieces are now in place in the backend to make this work correctly. We can either mask the input to 32 bits for pmuludg or shl/ashr for pmuldq and use a regular mul instruction. The backend should combine this to PMULUDQ/PMULDQ and then SimplifyDemandedBits will remove the and/shifts.
Differential Revision: https://reviews.llvm.org/D45421
llvm-svn: 329605
Change Header files of the intrinsics for lowering test and testn intrinsics to IR code.
Removed test and testn builtins from clang
Differential Revision: https://reviews.llvm.org/D38737
llvm-svn: 318035
This patch, together with a matching llvm patch (https://reviews.llvm.org/D38671), implements the lowering of X86 shuffle i/f intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D38672
Change-Id: I9b3c2f2b34323bd9ccb21d0c1832f848b88ec047
llvm-svn: 318025
x86 has undef SSE/AVX intrinsics that should represent a bogus register operand.
This is not the same as LLVM's undef value which can take on multiple bit patterns.
There are better solutions / follow-ups to this discussed here:
https://bugs.llvm.org/show_bug.cgi?id=32176
...but this should prevent miscompiles with a one-line code change.
Differential Revision: https://reviews.llvm.org/D30834
llvm-svn: 297588