Summary:
These calls change the order in which some nodes are processed and so have an effect on codegen.
The change in fixup-bw-copy.ll is due to (and (load anyext)) gets transformed into (load zext) while previously the and was removed by SimplifyDemandedBits, so the (load anyext) remained.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66543
llvm-svn: 369561
We cannot create null constants for certain types, e.g. VoidTy,
FunctionTy or LabelTy. getNullValue asserts if we pass in an
unsupported type. We should also check for opaque types, but I'm not
sure how.
This fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14795.
Reviewers: t.p.northover, jfb, vsk
Reviewed By: vsk
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65897
llvm-svn: 369557
Summary:
Add a flag to the FunctionToLoopAdaptor that allows enabling MemorySSA only for the loop pass managers that are known to preserve it.
If an LPM is known to have only loop transforms that *all* preserve MemorySSA, then use MemorySSA if `EnableMSSALoopDependency` is set.
If an LPM has loop passes that do not preserve MemorySSA, then the flag passed is `false`, regardless of the value of `EnableMSSALoopDependency`.
When using a custom loop pass pipeline via `passes=...`, use keyword `loop` vs `loop-mssa` to use MemorySSA in that LPM. If a loop that does not preserve MemorySSA is added while using the `loop-mssa` keyword, that's an error.
Add the new `loop-mssa` keyword to a few tests where a difference occurs when enabling MemorySSA.
Reviewers: chandlerc
Subscribers: mehdi_amini, Prazek, george.burgess.iv, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66376
llvm-svn: 369548
This is necessary for handling <3 x s16> on AMDGPU, assuming this
should be handled as 2 separate legalization actions. The alternative
would be for fewerElementsVector to handle 3->2.
llvm-svn: 369547
The hint instructions are enabled by default (if the standard C extension is
enabled). To disable them pass -mattr=-rvc-hints.
Differential Revision: https://reviews.llvm.org/D62592
llvm-svn: 369528
An intermediate extend is used to widen the narrow operand to the width of
the other (wider) operand. At that point, we have the same logic as the
existing transform that was restricted to folds of equal width zext/sext.
This mostly solves PR42700:
https://bugs.llvm.org/show_bug.cgi?id=42700
llvm-svn: 369519
The error reporting function are not consistent.
Before this change:
* They had inconsistent naming (e.g. 'error' vs 'report_error').
* Some of them reported the object name, others - dont.
* Some of them accepted the case when there was no error. (i.e. error code or Error had a success value).
This patch tries to cleanup it a bit.
It also renames report_error -> reportError, report_warning -> reportWarning
and removes a full stop from messages.
Differential revision: https://reviews.llvm.org/D66418
llvm-svn: 369515
r351882 allows different type for shift amount then result and value
being shifted. Fix MIPS Legalizer rules to take r351882 into account.
Differential Revision: https://reviews.llvm.org/D66203
llvm-svn: 369510
Add NarrowScalar for G_TRUNC when NarrowTy is half the size of source.
NarrowScalar G_TRUNC to s32 for MIPS32.
Differential Revision: https://reviews.llvm.org/D66202
llvm-svn: 369509
LiveDebugValues propagates variable locations between blocks by creating
new DBG_VALUE insts in the successors, then interpreting them when it
passes back through the block at a later time. However, this flushes out
any extra information about the location that LiveDebugValues holds: for
example, connections between variable locations such as discussed in
D65368. And as reported in PR42772 this causes us to lose track of the
fact that a spill-location is actually a spill, not a register location.
This patch fixes that by deferring the creation of propagated DBG_VALUEs
until after propagation has completed: instead location propagation occurs
only by sharing location ID numbers between blocks.
Differential Revision: https://reviews.llvm.org/D66412
llvm-svn: 369508
For an internal function, if all its call sites are dead, the body of the function is considered dead.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D66155
llvm-svn: 369470
Add a GlobalISel equivalent for the logical_imm32_XFORM and logical_imm64_XFORM
SDNodeXForms in AArch64InstrFormats.td.
- Add select-logical-imm.mir, which contains tests for each imported pattern.
- Update select-pr32733.mir and select-scalar-shift-imm.mir, since they now
select instructions of this form.
Differential Revision: https://reviews.llvm.org/D66162
llvm-svn: 369465
Summary:
When inserting a new Def, and inserting Phis in the IDF when needed,
also mark the already existing Phis in the IDF as non-optimized, since
these may need fixing as well.
In the test attached, there is a Phi in the IDF that happens to be
trivial, and is wrongfully removed by the call to getLastDef that
follows. This is a valid situation and the existing IDF Phis need to
marked as "may need fixing" as well.
Resolves PR43044.
Reviewers: george.burgess.iv
Subscribers: Prazek, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66495
llvm-svn: 369464
This adds GlobalISel equivalents for the following from AArch64InstrFormats:
- arith_shifted_reg32
- arith_shifted_reg64
And partial support for
- logical_shifted_reg32
- logical_shifted_reg32
The only thing missing for the logical cases is support for rotates. Other than
the missing support, the transformation is identical for the arithmetic shifted
register and the logical shifted register.
Lots of tests here:
- Add select-arith-shifted-reg.mir to show that we correctly select add and
sub instructions which use this pattern.
- Add select-logical-shifted-reg.mir to cover patterns which are not shared
between the arithmetic and logical cases.
- Update addsub-shifted.ll to show that we correctly fold shifts into
adds/subs.
- Update eon.ll to show that we can select the eon instruction by folding xors.
Differential Revision: https://reviews.llvm.org/D66163
llvm-svn: 369460
I also had to add a new combine to X86's combineExtractSubvector to prevent a regression.
This helps our vXi1 code see the full concat operation and allow it optimize undef to a zero if there is already a zero in the concat. This helped us use a movzx instead of an AND in some of the tests. In those tests, one concat comes from SelectionDAGBuilder and the second comes from type legalization of v4i1->i4 bitcasts which uses an additional concat. Though these changes weren't my original motivation.
I'm looking at making X86ISelLowering's narrowShuffle emit a concat_vectors instead of an insert_subvector since concat_vectors is more canonical during early DAG combine. This patch helps prevent a regression from my experiments with that.
Differential Revision: https://reviews.llvm.org/D66456
llvm-svn: 369459
Overloaded intrinsics can use iPTRAny in used/input operands.
The GlobalISelEmitter doesn't know that these are pointers, so it treats them
as scalars. As a result, these intrinsics can't be imported.
This teaches the GlobalISelEmitter to recognize these as pointers rather than
scalars.
Differential Revision: https://reviews.llvm.org/D65756
llvm-svn: 369455
Adds Wrapper classes for MCSymbol and MCSection into the XCOFF target
object writer. Also adds a class to represent the top-level sections, which we
materialize in the ObjectWriter.
executePostLayoutBinding will map all csects into the appropriate
container depending on its storage mapping class, and map all symbols
into their containing csect. Once all symbols have been processed we
- Assign addresses and symbol table indices.
- Calaculte section sizes.
- Build the section header table.
- Assign the sections raw-pointer value for non-virtual sections.
Since the .bss section is virtual, writing the header table is enough to
add support. Writing of a sections raw data, or of any relocations is
not included in this patch.
Testing is done by dumping the section header table, but it needs to be
extended to include dumping the symbol table once readobj support for
dumping auxiallary entries lands.
Differential Revision: https://reviews.llvm.org/D65159
llvm-svn: 369454
When running tests on windows, invoking "llc -march=<arch>" will
implicitly use windows as the target os, making these tests misbehave
after this change.
Fix the issue by using more specific -mtriple values instead of plain
-march in these tests.
This should hopefully fix buildbot failures like
http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/9816.
llvm-svn: 369443
Summary:
StringMap is used for storing call target to frequency map for AutoFDO. However the iterating order of StringMap is non-deterministic, which leads to non-determinism in AutoFDO profile output. Now new API getSortedCallTargets and SortCallTargets are added for deterministic ordering and output.
Roundtrip test for text profile and binary profile is added.
Reviewers: wmi, davidxl, danielcdh
Subscribers: hiraditya, mgrang, llvm-commits, twoh
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66191
llvm-svn: 369440
Without AVX512DQ we don't have KMOVB so we can't really copy 8-bits of a k-register to a GPR. We have to copy 16 bits instead. We do this even if the DAG copy is from v8i1->v16i1. If we detect the (i8 (bitcast (v8i1 (extract_subvector (v16i1 X), 0)))) we should rewrite the types to match the copy we do support. By doing this, we can help known bits to propagate without losing the upper 8 bits of the input to the extract_subvector. This allows some zero extends to be removed since we have an isel pattern to use kmovw for (zero_extend (i16 (bitcast (v16i1 X))).
Differential Revision: https://reviews.llvm.org/D66489
llvm-svn: 369434
We already had patterns for extending to i32 to take advantage of
the impliciting zeroing of the upper bits of a 32-bit GPR that is
done by KMOVW/KMOVB. But the extend might be all the way to i64,
in which case the existing patterns would fail and we'd get a
KMOVW/B followed by a MOVZX. By adding patterns for i64 we can
use the fact that KMOVW/B zero the upper bits of the 32-bit GPR
and the normal property that 32-bit GPR writes implicitly zero the
upper 32-bits of the full 64-bit GPR.
The anyextend patterns are slightly different since we don't care
about the upper zeros. For the i8->i64 I think this avoids selecting
the anyextend as a MOVZX to prevent a partial register issue that
doesn't exist. For i16->i64 I think we would have just emitted an
insert_subreg on top of the extract_subreg that the vXi16->i16
bitcast pattern emits. The register coalescer or peephole pass
should combine those, but this saves that work and makes i8/16
consistent.
llvm-svn: 369431
https://reviews.llvm.org/D66077
The value passed into dbg.value may relate to multiple registers,
each of which need a DBG_VALUE.
This fix calls MIRBuilder.buildDirectDbgValue for each register.
Without this, IR passed in from flang-compiler/flang may fail an
assertion in getOrCreateVReg.
Patch by : peterwaller-arm.
llvm-svn: 369403
test/llvm-objcopy/ELF/error-format.test is similar to test/llvm-readobj/error-format.test added in D66425.
Reviewed By: grimar, jhenderson
Differential Revision: https://reviews.llvm.org/D66476
llvm-svn: 369392
Currently the warning message of `llvm-strip %t.o %t.o` does not include
the trailing newline. Fix this by appending a '\n'.
This is the only warning llvm-objcopy and llvm-strip can issue.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D66475
llvm-svn: 369391
Summary:
When the line format is wrong, we may end up accessing out of bound
memory. eg: the test with invalide line will cause assert.
Assertion `idx < size()' failed
The fix is to report fatal when we found mismatched line format.
Reviewers: qcolombet, volkan
Reviewed By: qcolombet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66444
llvm-svn: 369389
Latency and throughput of LOCK INC/DEC/NEG/NOT is always 19cy.
Number of uOPs is still 1.
Differential Revision: https://reviews.llvm.org/D66469
llvm-svn: 369388
One of the report_error functions was taking object::Archive::Child as an
argument. It feels excessive, this patch removes it and introduce a helper
function instead. Also I fixed a "TODO" in this patch what improved the message printed.
Differential revision: https://reviews.llvm.org/D66468
llvm-svn: 369382
The type_offset field is 8 bytes long in DWARF64. The patch extends
TypeOffset to uint64_t and fixes its reading. The patch also fixes
checking of TypeOffset bounds as it was inaccurate in DWARF64 case.
Differential Revision: https://reviews.llvm.org/D66465
llvm-svn: 369378
Summary:
Currently, we report:
error: ...
Prepend argv[0] (tool name):
llvm-readobj: error: ...
This is consistent with most GNU binutils/clang/lld, and gives a bit
more context in a long build log.
Reviewed By: grimar, jhenderson, rupprecht
Differential Revision: https://reviews.llvm.org/D66425
llvm-svn: 369377
Follow binutils in using RISCV_32_PCREL for the FDE initial location. As
explained in the relevant binutils commit
<a6cbf936e3>,
the ADD/SUB pair of relocations is problematic in the presence of linker
relaxation.
This patch has the same end goal as D64715 but includes test changes and
avoids adding a new global VariantKind to MCExpr.h (preferring
RISCVMCExpr VKs like the rest of the RISC-V backend).
Differential Revision: https://reviews.llvm.org/D66419
llvm-svn: 369375
On Jaguar, CMPXCHG has a latency of 11cy, and a maximum throughput of 0.33 IPC.
Throughput is superiorly limited to 0.33 because of the implicit in/out
dependency on register EAX. In the case of repeated non-atomic CMPXCHG with the
same memory location, store-to-load forwarding occurs and values for sequent
loads are quickly forwarded from the store buffer.
Interestingly, the functionality in LLVM that computes the reciprocal throughput
doesn't seem to know about RMW instructions. That functionality only looks at
the "consumed resource cycles" for the throughput computation. It should be
fixed/improved by a future patch. In particular, for RMW instructions, that
logic should also take into account for the write latency of in/out register
operands.
An atomic CMPXCHG has a latency of ~17cy. Throughput is also limited to
~17cy/inst due to cache locking, which prevents other memory uOPs to start
executing before the "lock releasing" store uOP.
CMPXCHG8rr and CMPXCHG8rm are treated specially because they decode to one less
macro opcode. Their latency tend to be the same as the other RR/RM variants. RR
variants are relatively fast 3cy (but still microcoded - 5 macro opcodes).
CMPXCHG8B is 11cy and unfortunately doesn't seem to benefit from store-to-load
forwarding. That means, throughput is clearly limited by the in/out dependency
on GPR registers. The uOP composition is sadly unknown (due to the lack of PMCs
for the Integer pipes). I have reused the same mix of consumed resource from the
other CMPXCHG instructions for CMPXCHG8B too.
LOCK CMPXCHG8B is instead 18cycles.
CMPXCHG16B is 32cycles. Up to 38cycles when the LOCK prefix is specified. Due to
the in/out dependencies, throughput is limited to 1 instruction every 32 (or 38)
cycles dependeing on whether the LOCK prefix is specified or not.
I wouldn't be surprised if the microcode for CMPXCHG16B is similar to 2x
microcode from CMPXCHG8B. So, I have speculatively set the JALU01 consumption to
2x the resource cycles used for CMPXCHG8B.
The two new hasLockPrefix() functions are used by the btver2 scheduling model
check if a MCInst/MachineInst has a LOCK prefix. Calls to hasLockPrefix() have
been encoded in predicates of variant scheduling classes that describe lat/thr
of CMPXCHG.
Differential Revision: https://reviews.llvm.org/D66424
llvm-svn: 369365
This patch makes a change for test/Object tests responsible
for relocations.
* 2 tests were moved to llvm-readobj/llvm-objdump folders:
Object/elf-reloc-no-sym.test -> tools/llvm-readobj/elf-reloc-no-sym.test
Object/objdump-reloc-shared.test -> tools/llvm-objdump/relocations-in-nonreloc.test
* A prerecompiled binary was removed and these tests were refactored.
Differential revision: https://reviews.llvm.org/D66291
llvm-svn: 369342
Before, we create the set of abstract attributes initially and then
dealt with the fact hat a lookup could fail, e.g., return a nullptr.
This patch will ensure we always return a valid object from a lookup,
allowing us not only to remove the nullptr checks but also to grow the
set of abstract attributes "in-flight" on-demand.
One can now start from those that have the best chance of improving
performance without the need to specify all they might depend on.
While this introduces some boilerplate, the usage of attributes is much
easier and cleaner now.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66276
llvm-svn: 369331
Summary:
This is analogous to D66128 but for AADereferenceable. We have the logic
concentrated in the floating value updateImpl and we use the combiner
helper classes for arguments and return values.
The regressions will go away with "on-demand" attribute creation.
Improvements are already visible in the existing tests.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66272
llvm-svn: 369329
Summary:
What D66126 did for AAAlign, this patch does for AANonNull. Agian, the
logic becomes more concise and localized. Again, returned poiners are
not annotated properly but that will not be an issue if this lands with
the "on-demand" generation of attributes. First improvements due to the
genericValueTraversal are already visible.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66128
llvm-svn: 369328
WebAssembly doesn't support PC relative relocation or relocation
expressions that can't be reduced to single symbol.
The only support for we have for fixups involving two symbols are when
both symbols are defined and withing the same section. In this case
evaluateFixup will already have evaluated to the expression before
calling recordRelocation.
llvm-svn: 369317
Summary: The layout algorithm for relocatable objects and for executable are somewhat different. This patch implements the latter one based on the algorithm in LLD (MachOFileLayout).
Reviewers: alexshap, rupprecht, jhenderson
Reviewed By: alexshap
Subscribers: jakehehrlich, abrachet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65539
llvm-svn: 369301
Summary:
MTE provides instructions to update memory tags and data at the same
time. This change makes use of those to generate more compact code for
stack variable tagging + initialization.
We collect memory store and memset instructions following an alloca or a
lifetime.start call, and replace them with the corresponding MTE
intrinsics. Since the intrinsics work on 16-byte aligned chunks, the
stored values are combined as necessary.
Reviewers: pcc, vitalybuka, ostannard
Subscribers: srhines, javed.absar, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66167
llvm-svn: 369297
Summary:
When inserting uses from outside the MemorySSA creation, we don't
normally need to rename uses, based on the assumption that there will be
no inserted Phis (if Def existed that required a Phi, that Phi already
exists). However, when dealing with unreachable blocks, MemorySSA will
optimize away Phis whose incoming blocks are unreachable, and these Phis end
up being re-added when inserting a Use.
There are two potential solutions here:
1. Analyze the inserted Phis and clean them up if they are unneeded
(current method for cleaning up trivial phis does not cover this)
2. Leave the Phi in place and rename uses, the same way as whe inserting
defs.
This patch use approach 2.
Resolves first test in PR42940.
Reviewers: george.burgess.iv
Subscribers: Prazek, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66033
llvm-svn: 369291
In D66424 it has been requested to move all the new tests added by r369278 into
resources-x86_64.s. That is because only the 8b/16 ops should be tested by
resources-cmpxchg.s. This partially reverts r369278.
llvm-svn: 369288
The motivating case are the changes in vector-reduce-add.ll where
we were doing extra work in the scalar domain instead of shuffling.
There may be some one use check that needs to be looked into there,
but this patch sidesteps the issue by avoiding broadcasts that
aren't really broadcasting.
Differential Revision: https://reviews.llvm.org/D66071
llvm-svn: 369287
Summary:
The general fold is only valid for positive divisors.
Which effectively means, it is invalid for `INT_MIN` divisors,
and we currently bailout if we see them.
But that is too strict, we can just fix-up the results.
For that, let's do a second computation 'in parallel':
```
Name: srem -> and
Pre: isPowerOf2(C)
%o = srem i8 %X, C
%r = icmp eq %o, 0
=>
%n = and i8 %X, C-1
%r = icmp eq %n, 0
```
https://rise4fun.com/Alive/Sup
And then just blend results: if the divisor was `INT_MIN`,
pick the value we got via bit-test,
else pick the value from general fold.
There's interesting observation - `ISD::ROTR` is set to
`LegalizeAction::Expand` before AVX512, so we should not
treat `INT_MIN` divisor as even; and as it can be seen
while `@test_srem_odd_even_one` improves on all run-lines,
`@test_srem_odd_even_INT_MIN` only improves for AVX512.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66300
llvm-svn: 369268
Summary:
If we have a MI marked with bitcast bits, but without input operands,
PeepholeOptimizer might crash with assert.
eg:
If we apply the changes in PPCInstrVSX.td as in this patch:
[(set v4i32:$XT, (bitconvert (v16i8 immAllOnesV)))]>;
We will get assert in PeepholeOptimizer.
```
llvm-lit llvm-project/llvm/test/CodeGen/PowerPC/build-vector-tests.ll -v
llvm-project/llvm/include/llvm/CodeGen/MachineInstr.h:417: const
llvm::MachineOperand &llvm::MachineInstr::getOperand(unsigned int)
const: Assertion `i < getNumOperands() && "getOperand() out of range!"'
failed.
```
The fix is to abort if we found out of bound access.
Reviewers: qcolombet, MatzeB, hfinkel, arsenm
Reviewed By: qcolombet
Subscribers: wdng, arsenm, steven.zhang, wuzish, nemanjai, hiraditya, kbarton, MaskRay, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65542
llvm-svn: 369261
The current behavior of shouldForceRelocation forces relocations for the
majority of fixups when relaxation is enabled. This makes sense for
fixups which incorporate symbols but is unnecessary for simple data
fixups where the fixup target is already resolved to an absolute value.
Differential Revision: https://reviews.llvm.org/D63404
Patch by Edward Jones.
llvm-svn: 369257
Summary:
Extend the MIR parser and writer so that the call site information can
refer to calls that are bundled.
Reviewers: aprantl, asowda, NikolaPrica, djtodoro, ivanbaev, vsk
Reviewed By: aprantl
Subscribers: arsenm, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D66145
llvm-svn: 369256
Currently the machine instruction sinker identifies DBG_VALUE insts that
also need to sink by comparing register numbers. Unfortunately this isn't
safe, because (after register allocation) a DBG_VALUE may read a register
that aliases what's being sunk. To fix this, identify the DBG_VALUEs that
need to sink by recording & examining their register units. Register units
gives us the following guarantee:
"Two registers overlap if and only if they have a common register unit"
[MCRegisterInfo.h]
Thus we can always identify aliasing DBG_VALUEs if the set of register
units read by the DBG_VALUE, and the register units of the instruction
being sunk, intersect. (MachineSink already uses classes like
"LiveRegUnits" for determining sinking validity anyway).
The test added checks for super and subregister DBG_VALUE reads of a sunk
copy being sunk as well.
Differential Revision: https://reviews.llvm.org/D58191
llvm-svn: 369247
This patch adds vecreduce_add and the relevant instruction selection for
vaddv.
Differential revision: https://reviews.llvm.org/D66085
llvm-svn: 369245
This adds some sext costs for MVE, taken from the length of assembly sequences
that we currently generate.
Differential Revision: https://reviews.llvm.org/D66010
llvm-svn: 369244
LiveDebugVariables can coalesce ranges of variable locations across
multiple basic blocks. However when it recreates DBG_VALUE instructions,
it has to recreate one DBG_VALUE per block, otherwise it doesn't
represent the pre-regalloc layout and variable assignments can go missing.
This feature works -- however while mucking around with LiveDebugVariables,
I commented the relevant code it out and no tests failed. Thus, here's a
test that checks LiveDebugVariables preserves DBG_VALUEs across block
boundaries.
Differential Revision: https://reviews.llvm.org/D66347
llvm-svn: 369243
Replace
- error: No relocation available to represent this relative expression
with
+ error: symbol 'undef' can not be undefined in a subtraction expression
or
+ error: Cannot represent a difference across sections
Keep !IsPcRel as an assertion after the two diagnostic checks are done.
llvm-svn: 369239
GNU as keeps the original symbol in the symbol table for defined @ and
@@, but suppresses it in other cases (@@@ or undefined). The original
symbol is usually undesired:
In a shared object, the original symbol can be localized with a version
script, but it is hard to remove/localize in an archive:
1) a post-processing step removes the undesired original symbol
2) consumers (executable) of the archive are built with the
version script
Moreover, it can cause linker issues like binutils PR/18703 if the
original symbol name and the base name of the versioned symbol is the
same (both ld.bfd and gold have some code to work around defined @ and
@@). In lld, if it sees f and f@v1:
--version-script =(printf 'v1 {};') => f and f@v1
--version-script =(printf 'v1 { f; };') => f@v1 and f@@v1
It can be argued that @@@ added on 2000-11-13 corrected the @ and @@ mistake.
This patch catches some more multiple version errors (defined @ and @@),
and consistently suppress the original symbol. This addresses all the
problems listed above.
If the user wants other aliases to the versioned symbol, they can copy
the original symbol to other symbol names with .set directive, e.g.
.symver f, f@v1 # emit f@v1 but not f into .symtab
.set f_impl, f # emit f_impl into .symtab
llvm-svn: 369233
We can support these by widening to a supported type,
then shifting all the way to the left and then
back to the right to ensure that we shift in zeroes.
llvm-svn: 369232
Summary: The layout algorithm for relocatable objects and for executable are somewhat different. This patch implements the latter one based on the algorithm in LLD (MachOFileLayout).
Reviewers: alexshap, rupprecht, jhenderson
Reviewed By: alexshap
Subscribers: jakehehrlich, abrachet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65539
llvm-svn: 369231
This allows us to widen the type when the KSHIFTR instruction
doesn't exist for the type. If we need to shift in zeroes into
the upper elements we would need more work to guarantee zeroes
when widening.
llvm-svn: 369227
We are currently missing this because shuffle canonicalization
puts the zero vector as V1 and the subvector as V2. Our current
code doesn't recognize this case.
llvm-svn: 369225
For such a case we should only need a KSHIFTL, but we were
previously generating a KSHIFTL followed by a KSHIFTR because
we mistakenly believed we need to zero the undef elements.
llvm-svn: 369224
Add similar functionality to isShuffleEquivalent - if the mask elements don't match, try matching the BUILD_VECTOR scalars instead.
As target shuffles need to handle SM_Sentinel values, this can get a bit tricky, so commit just adds actual mask element index handling - full SM_SentinelZero support will be added when the need arises.
Also, enables support in matchVectorShuffleWithPACK
llvm-svn: 369212
These were recently made simple types. This restores their
behavior back to something like their EVT legalization.
We might be able to fix the code in type legalization where the
assert was failing, but I didn't investigate too much as I had
already looked at the computeRegisterProperties code during the
review for v3i16/v3f16.
Most of the test changes restore the X86 codegen back to what
it looked like before the recent change. The test case in
vec_setcc.ll and is a reduced version of the reproducer from
the fuzzer.
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=16490
llvm-svn: 369205
Commit https://reviews.llvm.org/D57939 ("[DWARF] Refactor
RelocVisitor and fix computation of SHT_RELA-typed relocation entries)
made a change for relocation resolution when operating
on an object file.
The change unfortunately broke BPF as given SymbolValue (S) and
Addent (A), previously relocation is resolved to
S + A
and after the change, it is resolved to
S
This patch fixed the issue by resolving relocation correctly.
It looks not all relocation resolution reaches here and I did not
trace down exactly when. But I do find if the object file includes
codes in two different ELF sections than default ".text",
the above bug will be triggered.
This patch included a trivial two function source code to
demonstrate this issue. The relocation for .debug_loc is resolved
incorrectly due to this and llvm-objdump cannot display source
annotated assembly.
Differential Revision: https://reviews.llvm.org/D66372
llvm-svn: 369199
Fix: Add a `consumeError` call removed by mistake to 'printStackSize',
this should fix the "Expected<T> must be checked before access or destruction." reported by following bot:
http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/9743/steps/stage%201%20check/logs/stdio
Original commit message:
Currently we have the following functions for error reporting:
LLVM_ATTRIBUTE_NORETURN void reportError(Twine Msg);
void reportError(Error Err, StringRef Input);
void reportWarning(Twine Msg);
void reportWarning(StringRef Input, Error Err);
void warn(llvm::Error Err);
void error(std::error_code EC);
Problems are: naming is inconsistent, arguments order is inconsistent,
some of the functions looks excessive.
After applying this patch we have:
void reportError(Error Err, StringRef Input);
void reportError(std::error_code EC, StringRef Input);
void reportWarning(Error Err, StringRef Input);
I'd be happy to remove reportError(std::error_code EC, StringRef Input) too, but it
is used by COFF heavily.
Test cases were updated, they show an improvement introduced.
Differential revision: https://reviews.llvm.org/D66286
llvm-svn: 369194
Summary:
Fix a bug of preducessors.
In `block-placement` pass, it will create some patterns for unconditional we can do the simple early retrun.
But the `early-ret` pass is before `block-placement`, we don't want to run it again.
This patch is to do the simple early return to optimize the blocks at the last of `block-placement`.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D63972
llvm-svn: 369191
urrently we have the following functions for error reporting:
--
LLVM_ATTRIBUTE_NORETURN void reportError(Twine Msg);
void reportError(Error Err, StringRef Input);
void reportWarning(Twine Msg);
void reportWarning(StringRef Input, Error Err);
void warn(llvm::Error Err);
void error(std::error_code EC);
---
Problems are: naming is inconsistent, arguments order is inconsistent,
some of the functions looks excessive.
After applying this patch we have:
---
LLVM_ATTRIBUTE_NORETURN void reportError(Error Err, StringRef Input);
LLVM_ATTRIBUTE_NORETURN void reportError(std::error_code EC, StringRef Input);
void reportWarning(Error Err, StringRef Input);
---
I'd be happy to remove reportError(std::error_code EC, StringRef Input) too, but it
is used by COFF heavily.
Test cases were updated, they show an improvement introduced.
Differential revision: https://reviews.llvm.org/D66286
llvm-svn: 369190
There are 2 similar openbsd-phdrs.elf-x86-64 objects committed and
used in test/Object and test/tools/llvm-objdump test cases.
There is no reason to have them, we can use YAML instead. Patch does that.
Differential revision: https://reviews.llvm.org/D66342
llvm-svn: 369189
This addresses the issue introduced in r369169, we need to unwrap
the value first before we can check whether it's empty. This also
swaps the two branches to put the common path first which should
be NFC.
llvm-svn: 369177
This reverts commit 5dbb90bfe1.
As noted in the post-commit thread for r367891, this can create
a multiply that is lowered to a libcall that may not exist.
We need to improve the backend decomposition for integer multiply
before trying to re-land this (if it's still worthwhile after
doing the backend work).
llvm-svn: 369174
This is useful when trying to read notes from stripped files and matches
the behavior of GNU readelf and eu-readelf.
Differential Revision: https://reviews.llvm.org/D66358
llvm-svn: 369169
If OptimizeExtractBits() encountered a shift instruction with no operands at all,
it would erase the instruction, but still return false.
This previously didn’t matter because its caller would always return after
processing the instruction, but https://reviews.llvm.org/D63233 changed the
function’s caller to fall through if it returned false, which would then cause
a use-after-free detectable by ASAN.
This change makes OptimizeExtractBits return true if it removes a shift
instruction with no users, terminating processing of the instruction.
Patch by: @brentdax (Brent Royal-Gordon)
Differential Revision: https://reviews.llvm.org/D66330
llvm-svn: 369168
We currently don't use liveness information after this point, but it can
be useful to catch bugs using -verify-machineinstrs, and optimizations
could potentially use this information in the future.
Differential Revision: https://reviews.llvm.org/D66319
llvm-svn: 369162
Summary:
Before we required the comparison against null to be "canonical", hence
null to be operand #1. This patch allows null to be in either operand,
similar to the handling of loaded globals that follows.
Reviewers: sanjoy, hfinkel, aykevl, sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66321
llvm-svn: 369158
Push LR register before calling __gnu_mcount_nc as it expects the value of LR register to be the top value of
the stack on ARM32.
Differential Revision: https://reviews.llvm.org/D65019
llvm-svn: 369147
Summary:
This is the first commit aiming to structure the attribute deduction.
The base idea is that we have default propagation patterns as listed
below on top of which we can add specific, e.g., context sensitive,
logic.
Deduction patterns used in this patch:
- argument states are determined from call site argument states,
see AAAlignArgument and AAArgumentFromCallSiteArguments.
- call site argument states are determined as if they were floating
values, see AAAlignCallSiteArgument and AAAlignFloating.
- floating value states are determined by traversing the def-use chain
and combining the states determined for the leaves, see
AAAlignFloating and genericValueTraversal.
- call site return states are determined from function return states,
see AAAlignCallSiteReturned and AACallSiteReturnedFromReturned.
- function return states are determined from returned value states,
see AAAlignReturned and AAReturnedFromReturnedValues.
Through this strategy all logic for alignment is concentrated in the
AAAlignFloating::updateImpl method.
Note: This commit works on its own but is part of a larger change that
involves "on-demand" creation of abstract attributes that will
participate in the fixpoint iteration. Without this part, we sometimes
do not have an AAAlign abstract attribute to query, loosing information
we determined before. All tests have appropriate FIXMEs and the
information will be recovered once we added all parts.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66126
llvm-svn: 369144
This pattern may arise more frequently with an enhancement to SLP vectorization suggested in PR42755:
https://bugs.llvm.org/show_bug.cgi?id=42755
...but we should handle this pattern to make things easier for the backend either way.
For all in-tree targets that I looked at, codegen for typical vector sizes looks better when we change
to a vector select, so this is safe to do without a cost model (in other words, as a target-independent
canonicalization).
For example, if the condition of the select is a scalar, we end up with something like this on x86:
vpcmpgtd %xmm0, %xmm1, %xmm0
vpextrb $12, %xmm0, %eax
testb $1, %al
jne LBB0_2
## %bb.1:
vmovaps %xmm3, %xmm2
LBB0_2:
vmovaps %xmm2, %xmm0
Rather than the splat-condition variant:
vpcmpgtd %xmm0, %xmm1, %xmm0
vpshufd $255, %xmm0, %xmm0 ## xmm0 = xmm0[3,3,3,3]
vblendvps %xmm0, %xmm2, %xmm3, %xmm0
Differential Revision: https://reviews.llvm.org/D66095
llvm-svn: 369140
Again, it's weird that these are allowed. Since lowering support was added in
r368709 we started crashing on compiling the neon intrinsics test in the test
suite. This fixes the lowering to fold the 1 elt src/mask case into copies.
llvm-svn: 369135
Eventually we need to generalize combineExtractWithShuffle to handle all faux shuffles and handle truncate (and X86ISD::VTRUNC etc.) there, but we're not ready yet (still creates nodes on the fly, incomplete DemandedElts support, bad use of recursive Depth limit).
llvm-svn: 369134
Recommit with fixes for mac builders.
Summary:
AArch64InstrInfo::getInstSizeInBytes is incorrectly treating meta
instructions (e.g. CFI_INSTRUCTION) as normal instructions and
giving them a size of 4.
This results in branch relaxation calculating block sizes wrong.
Branch relaxation also considers alignment and thus a single
mistake can result in later blocks being incorrectly sized even
when they themselves do not contain meta instructions.
The net result is we might not relax a branch whose destination is
not within range.
Reviewers: nickdesaulniers, peter.smith
Reviewed By: peter.smith
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66337
> llvm-svn: 369111
llvm-svn: 369133
In function Analysis.cpp:isInTailCallPosition, instructions between call and ret are checked to see if they block tail call optimization. If an instruction is an intrinsic call, only llvm.lifetime_end is allowed and other intrinsic functions block tail call. When compiling tcmalloc, we found llvm.assume between a hot function call and ret, it blocks the optimization. But llvm.assume doesn't generate instructions, it should not block tail call.
Differential Revision: https://reviews.llvm.org/D66096
llvm-svn: 369125
Changes:
There was a condition for `!NeedsFrameRecord` missing in the assert. The
assert in question has changed to:
+ assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
+ RPI.Reg1 == AArch64::LR) &&
+ "FrameRecord must be allocated together with LR");
This addresses PR43016.
llvm-svn: 369122
MVE also has some sext of loads, which will be free just as scalar
instructions are.
Differential Revision: https://reviews.llvm.org/D66008
llvm-svn: 369118
Summary:
This is continuation of D63829 / https://bugs.llvm.org/show_bug.cgi?id=42399
I thought naive pattern would solve my issue, but nope, it involved truncation,
thus more folds needed.. This isn't really the fold i'm interested in,
i need trunc-of-lshr, but i'we decided to start with `shl` because it's simpler.
In this case, no extra legality checks are needed:
https://rise4fun.com/Alive/CAb
We should be careful about not increasing instruction count,
since we need to produce `zext` because `and` is done in wider type.
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66057
llvm-svn: 369117
Summary:
AArch64InstrInfo::getInstSizeInBytes is incorrectly treating meta
instructions (e.g. CFI_INSTRUCTION) as normal instructions and
giving them a size of 4.
This results in branch relaxation calculating block sizes wrong.
Branch relaxation also considers alignment and thus a single
mistake can result in later blocks being incorrectly sized even
when they themselves do not contain meta instructions.
The net result is we might not relax a branch whose destination is
not within range.
Reviewers: nickdesaulniers, peter.smith
Reviewed By: peter.smith
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66337
llvm-svn: 369111
The widening and narrowing MVE instructions like VLDRH.32 are only permitted to
use low tGPR registers. This means that if they are used for a stack slot,
where the register used is only decided during frame setup, we need to be able
to correctly pick a thumb1 register over a normal GPR.
This attempts to add the required logic into eliminateFrameIndex and
rewriteT2FrameIndex, only picking the FrameReg if it is a valid register for
the operands register class, and picking a valid scratch register for the
register class.
Differential Revision: https://reviews.llvm.org/D66285
llvm-svn: 369108
Add some test cases displaying the lack of DAG combine
folds for SMULFIX/UMULFIX/SMULFIXSAT when either
multiplicand is undef or zero.
It seems like widening vector legalization for X86 can
introduce fixed point multiplication of undef values.
So that is one way that such operations could appear
during ISel.
Multiplication with zero is probably more unlikely, and
could potentially be handled by InstCombine. But I do
not think it would hurt to do such folds in DAGCombiner.
This patch only adds the test case. The folds will be
added in a follow up patch.
llvm-svn: 369102
We don't yet know how to generate these instructions for MVE. And in the case
of VLD3, we don't even have the instruction. For the moment don't tell the
vectoriser that we have VLD4, just to end up serialising the results.
Differential Revision: https://reviews.llvm.org/D66009
llvm-svn: 369101
This patch allows symbols followed by an expression for an offset to be
parsed as bare symbols.
Differential Revision: https://reviews.llvm.org/D57332
llvm-svn: 369097
This allows arguments with the constraint A to be lowered to input nodes
for RISC-V, which implies a memory address stored in a register.
This patch adds the minimal amount of code required to get operands with
the right constraints to compile.
https://reviews.llvm.org/D54296
llvm-svn: 369095
In r369026 we disabled spill-recognition in LiveDebugValues for anything
that has a complex expression. This is because it's hard to recover the
complex expression once the spill location is baked into it.
This patch re-enables spill-recognition and slightly adjusts the DBG_VALUE
insts that LiveDebugValues tracks: instead of tracking the last DBG_VALUE
for a variable, it tracks the last _unspilt_ DBG_VALUE. The spill-restore
code is then able to access and copy the original complex expression; but
the rest of LiveDebugValues has to be aware of the slight semantic shift,
and produce a new spilt location if a spilt location is propagated between
blocks.
The test added produces an incorrect variable location (see FIXME), which
will be the subject of future work.
Differential Revision: https://reviews.llvm.org/D65368
llvm-svn: 369092
Summary:
Currently we fail to compute known bits for recurrences where the
first incoming value is the start value of the recurrence.
Instead of exiting the loop when the first incoming value is not
the step of the recurrence, continue to check the second incoming
value.
The original code uses a loop to handle both cases, but incorrectly
exits instead of continuing.
Reviewers: lebedev.ri, spatel, nikic
Reviewed By: lebedev.ri
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66216
llvm-svn: 369088
Summary:
This patch adds G_GEP to `shouldCSEOpc` so that it can be CSEd. It also refactors
`translateGetElementPtr` by replacing `createGenericVirtualRegister` calls with types.
Reviewers: aditya_nandakumar, arsenm, dsanders, paquette, aemerson
Reviewed By: aditya_nandakumar
Subscribers: wdng, rovka, javed.absar, hiraditya, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66316
llvm-svn: 369070
Two issues:
1. t2CMPri shouldn't use CPSR if it isn't predicated. This doesn't
really have any visible effect at the moment, but it might matter in the
future.
2. The t2CMPri generated for t2WhileLoopStart might need to use a
register that isn't LR.
My team found this because we have a patch to track register liveness
late in the pass pipeline. I'll look into upstreaming it to help catch
issues like this earlier.
Differential Revision: https://reviews.llvm.org/D66243
llvm-svn: 369069
llvm-lto2 doesn't treat "-" as stdout, so the test added in r369024 creates a
file named "-.0". This patch makes the test look more like other tests that use
llvm-lto2.
llvm-svn: 369066
Summary:
This pass tries to remove Global Variables, as well as their derived uses. For example if a variable `@x` is used by `%call1` and `%call2`, both these uses and the definition of `@x` are deleted. Moreover if `%call1` or `%call2` are used elsewhere those uses are also deleted, and so on recursively.
I'm still uncertain if this pass should remove derived uses, I'm open to suggestions.
Subscribers: mgorny, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64176
> llvm-svn: 368918
llvm-svn: 369061
Summary:
This also changes all the outs() statements to errs() so the output and
progress streams don't get mixed.
This has been added because D64176 had flaky tests, which I believe were because the reduced file was being catted into `FileCheck`, instead of being pass from STDOUT directly.
Reviewers: chandlerc, dblaikie, xbolva00
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66314
llvm-svn: 369060
AMDGPU has some buffer intrinsics which theoretically could use
this. Some of the generated tables include the 3 and 4 element vector
versions of these rounded to 64-bits, which is ambiguous. Add these to
help the table disambiguate these.
Assertion change is for the path odd sized vectors now take for R600.
v3i16 is widened to v4i16, which then needs to be promoted to v4i32.
llvm-svn: 369038
This patch avoids a crash caused by DW_OP_LLVM_fragments being dropped
from DIExpressions by LiveDebugValues spill-restore code. The appearance
of a previously unseen fragment configuration confuses LDV, as documented
in PR42773, and reproduced by the test function this patch adds (Crashes
on a x86_64 debug build).
To avoid this, on spill restore, we now use fragment information from the
spilt-location-expression.
In addition, when spilling, we now don't spill any DBG_VALUE with a complex
expression, as it can't be safely restored and will definitely lead to an
incorrect variable location. The discussion of this is in D65368.
Differential Revision: https://reviews.llvm.org/D66284
llvm-svn: 369026
For indirect call sites having a small set of possible callees,
!callees metadata can be used to indicate what those callees are.
This patch updates the call graph and lazy call graph analyses so
that they consider this metadata when encountering call sites. For
the call graph, it adds a new external call graph node to the graph
for each unique !callees metadata node. A call graph edge connects
an indirect call site with the external node associated with the
!callees metadata that is attached to it. And there is an edge from
this external node to each of the callees indicated by the metadata.
Similarly, for the lazy call graph, the patch adds Ref edges from a
caller to the possible callees indicated by the metadata.
The primary purpose of the patch is to facilitate iterating over the
functions in a module such that all of the callees indicated by a
given !callees metadata node will be visited prior to the functions
containing call sites annotated by that node. This property is
required by optimizations performing a bottom-up traversal of the
SCC DAG. For example, the inliner can be made to inline through an
indirect call. If the call site is annotated with !callees metadata,
this patch ensures that the inliner will have visited all of the
callees prior to the caller, allowing it to reliably compute the
cost of inlining one or more of the potential callees.
Original patch by @mssimpso. I've made some small changes to get it
to apply, build, and pass tests on the top of tree, as well as
some minor tweaks to formatting and functionality.
Subscribers: mehdi_amini, hiraditya, llvm-commits, mssimpso
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D39339
llvm-svn: 369025
Summary: IR printing has not been correctly supported with (Thin)LTO if the new pass manager is enabled. Previously we only get outputs from backend(codegen) passes, as they are still under legacy pass manager even when the new pass manager is enabled. This patch addresses the issue and enables IR printing for optimization passes with new pass manager + (Thin)LTO setting.
Reviewers: fedor.sergeev, philip.pfaffe
Subscribers: mehdi_amini, inglorion, hiraditya, steven_wu, dexonsmith, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66253
llvm-svn: 369024
Now that we're using widening legalization. We need to improve our extract_subvector cost model for these types. This patch begins by modeling these as a subvector extract followed by a permute. I've left FIXMEs in the code for future improvements.
Differential Revision: https://reviews.llvm.org/D65892
llvm-svn: 369022
Summary:
xxspltib/vspltisb are 3 cycle PM instructions,
xxleqv is 2 cycle ALU instruction.
We should use xxleqv to set all one vectors.
Reviewers: hfinkel, nemanjai, steven.zhang
Subscribers: hiraditya, kbarton, MaskRay, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65529
llvm-svn: 369006
objdump-file-header.test is placed in the wrong folder.
I removed it and updated the existent llvm-objdump test cases with
the updated content of the file removed.
Differential revision: https://reviews.llvm.org/D66288
llvm-svn: 369004
Summary:
This patch has trigger a bug of r368339, and the r368339 has been reverted, So upstream this patch again.
In `block-placement` pass, it will create some patterns for unconditional we can do the simple early retrun.
But the `early-ret` pass is before `block-placement`, we don't want to run it again.
This patch is to do the simple early return to optimize the blocks at the last of `block-placement`.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D63972
llvm-svn: 368997
We need to allow any alignment at least 2, not just exactly 2, so that the big
endian loads and stores can be selected successfully. I've also added extra BE
testing for the load and store tests.
Thanks to Oliver for the report.
Differential Revision: https://reviews.llvm.org/D66222
llvm-svn: 368996
If the last step in an FP add reduction allows reassociation and doesn't care
about -0.0, then we are free to recognize that computation as a reduction
that may reorder the intermediate steps.
This is requested directly by PR42705:
https://bugs.llvm.org/show_bug.cgi?id=42705
and solves PR42947 (if horizontal math instructions are actually faster than
the alternative):
https://bugs.llvm.org/show_bug.cgi?id=42947
Differential Revision: https://reviews.llvm.org/D66236
llvm-svn: 368995
Stack loads and stores were already working, but direct stores were not. This
adds the patterns for them, same as predicate loads.
Differential Revision: https://reviews.llvm.org/D66213
llvm-svn: 368988
This patch changes the location of the frame-record (FP, LR) to the
bottom of the callee-saved area. According to the AAPCS the location of
the frame-record within the stackframe is unspecified (section 5.2.3 The
Frame Pointer), so the compiler should be free to choose a different
location.
The reason for changing the location of the frame-record is to prepare
the frame for allocating an SVE area below the callee-saves. This way the
compiler can use the VL-scaled addressing modes to directly access SVE
objects from the frame-pointer.
: :
| stack | | stack |
| args | | args |
+-------+ +-------+
| x30 | | x19 |
| x29 | | x20 |
FP -> |- - - -| | x21 |
| x19 | ==> | x22 |
| x20 | |- - - -|
| x21 | | x30 |
| x22 | | x29 |
+-------+ +-------+ <- FP
|///////| |///////| // realignment gap
|- - - -| |- - - -|
|spills/| |spills/|
| locals| | locals|
SP -> +-------+ +-------+ <- SP
Things to point out:
- The algorithm to find a paired register should be prevented from
accidentally pairing some callee-saved register with LR that is not
FP, since they should always be paired together when the frame
has a frame-record.
- For Darwin platforms the location of the frame-record is unchanged,
since the unwind encoding does not allow for encoding this position
dynamically and other tools currently depend on the former layout.
Reviewers: efriedma, rovka, rengolin, thegameg, greened, t.p.northover
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D65653
llvm-svn: 368987
This patch adds a ptrmask intrinsic which allows masking out bits of a
pointer that must be zero when accessing it, because of ABI alignment
requirements or a restriction of the meaningful bits of a pointer
through the data layout.
This avoids doing a ptrtoint/inttoptr round trip in some cases (e.g. tagged
pointers) and allows us to not lose information about the underlying
object.
Reviewers: nlopes, efriedma, hfinkel, sanjoy, jdoerfert, aqjune
Reviewed by: sanjoy, jdoerfert
Differential Revision: https://reviews.llvm.org/D59065
llvm-svn: 368986
This adds patterns for selecting trunc instructions from full vectors to i1's
vectors.
Differential Revision: https://reviews.llvm.org/D66201
llvm-svn: 368981
assume_safety implies that loads under "if's" can be safely executed
speculatively (unguarded, unmasked). However this assumption holds only for the
original user "if's", not those introduced by the compiler, such as the
fold-tail "if" that guards us from loading beyond the original loop trip-count.
Currently the combination of fold-tail and assume-safety pragmas results in
ignoring the fold-tail predicate that guards the loads, generating unmasked
loads. This patch fixes this behavior.
Differential Revision: https://reviews.llvm.org/D66106
Reviewers: Ayal, hsaito, fhahn
llvm-svn: 368973
We already had the pattern for just the scalar to vector and bitcast,
but not the case where we wanted zeroes in the high half of the xmm.
llvm-svn: 368972
Summary:
Fixes https://bugs.llvm.org/show_bug.cgi?id=36578 and https://bugs.llvm.org/show_bug.cgi?id=36296.
Supersedes: https://reviews.llvm.org/D55966
One of the fundamental transformation that CoroSplit pass performs before splitting the coroutine is to find which values need to survive between suspend and resume and provide a slot for them in the coroutine frame to spill and restore the value as needed.
Coroutine frame becomes available once the storage for it was allocated and that point is marked in the pre-split coroutine with a llvm.coro.begin intrinsic.
FE normally puts all of the user-authored code that would be accessing those values after llvm.coro.begin, however, sometimes instructions accessing those values would end up prior to coro.begin. For example, writing out a value of the parameter into the alloca done by the FE or instructions that are added by the optimization passes such as SROA when it rewrites allocas.
Prior to this change, CoroSplit pass would try to move instructions that may end up accessing the values in the coroutine frame after CoroBegin. However it would run into problems (report_fatal_error) if some of the values would be used both in the allocation function (for example allocator is passed as a parameter to a coroutine) and in the use-authored body of the coroutine.
To handle this case and to simplify the instruction moving logic, this change removes all of the instruction moving. Instead, we only change the uses of the spilled values that are dominated by coro.begin and leave other instructions intact.
Before:
```
%var = alloca i32
%1 = getelementptr .. %var; ; will move this one after coro.begin
%f = call i8* @llvm.coro.begin(
```
After:
```
%var = alloca i32
%1 = getelementptr .. %var; stays put
%f = call i8* @llvm.coro.begin(
```
If we discover that there is a potential write into an alloca, prior to coro.begin we would copy its value from the alloca into the spill slot in the coroutine frame.
Before:
```
%var = alloca i32
store .. %var ; will move this one after coro.begin
%f = call i8* @llvm.coro.begin(
```
After:
```
%var = alloca i32
store .. %var ;stays put
%f = call i8* @llvm.coro.begin(
%tmp = load %var
store %tmp, %spill.slot.for.var
```
Note: This change does not handle array allocas as that is something that C++ FE does not produce, but, it can be added in the future if need arises
Reviewers: llvm-commits, modocache, ben-clayton, tks2103, rjmccall
Reviewed By: modocache
Subscribers: bartdesmet
Differential Revision: https://reviews.llvm.org/D66230
llvm-svn: 368949
Summary: This exposes `CallInst`'s tail call kind via new `LLVMGetTailCallKind` and `LLVMSetTailCallKind` functions. The motivation for this is to be able to see `musttail` for languages that require mandatory tail calls for correctness. Today only the weaker `LLVMSetTail` is exposed and there is no way to set `GuaranteedTailCallOpt` via the C API.
Reviewers: CodaFi, jyknight, deadalnix, rnk
Reviewed By: CodaFi
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66061
llvm-svn: 368945
Summary: This modification was put in place so the `ReduceMetadata` pass doesn't have to consider debug functions
Reviewers: dblaikie
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66257
llvm-svn: 368934
Implement this single atomic load instruction so that we can compile stack
protector code.
Differential Revision: https://reviews.llvm.org/D66245
llvm-svn: 368923
Summary:
As one of the first attributes, and one of the complex ones,
AAReturnedValues was not using liveness but we filtered the result after
the fact. This change adds liveness usage during the creation. The
algorithm is also improved and shorter.
The new algorithm will collect returned values over time using the
generic facilities that work with liveness already, e.g.,
genericValueTraversal which does not look at dead PHI node predecessors.
A test to show how this leads to better results is included.
Note: Unresolved calls and resolved calls are now tracked explicitly.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66120
llvm-svn: 368922
Summary:
This pass tries to remove Global Variables, as well as their derived uses. For example if a variable `@x` is used by `%call1` and `%call2`, both these uses and the definition of `@x` are deleted. Moreover if `%call1` or `%call2` are used elsewhere those uses are also deleted, and so on recursively.
I'm still uncertain if this pass should remove derived uses, I'm open to suggestions.
Subscribers: mgorny, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64176
llvm-svn: 368918
We already supported rewriting loop exit values for multiple exit loops, but if any of the loop exits were not computable, we gave up on all loop exit values. This patch generalizes the existing code to handle individual computable loop exits where possible.
As discussed in the review, this is a starting point for figuring out a better API. The code is a bit ugly, but getting it in lets us test as we go.
Differential Revision: https://reviews.llvm.org/D65544
llvm-svn: 368898
Summary: There are places where a case that debug label scope has an extra lexical block file is not considered properly. The modified test won't pass without this patch.
Reviewers: aprantl, HsiangKai
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66187
llvm-svn: 368891