Summary:
This avoids C++ UB if the GEP is weird and the calculation overflows
int64_t, and it's also observable in the cost model's results.
Such GEPs are almost surely not valid pointers, but LLVM nonetheless
generates them sometimes.
Reviewers: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38337
llvm-svn: 314362
This patch produces a crash and hexagon_vector_loop_carried_reuse_constant.ll test fails on Windows (llvm-clang-x86_64-expensive-checks-win build bot).
llvm-svn: 314361
This reverts r314017 and similar code added in later commits. It seems to not work for pointer compares and is causing a bot failure for the last several days.
llvm-svn: 314360
running watchos. These tests cannot run on normal customer devices,
but I hope to some day have a public facing bot running against a
device.
llvm-svn: 314355
The tar format originally supported up to 99 byte filename. The two
extensions are proposed later: Ustar or PAX.
In the UStar extension, a pathanme is split at a '/' and its "prefix"
and "suffix" are stored in different locations in the tar header. Since
"prefix" can be up to 155 byte, it can represent up to 254 byte
filename (but exact limit depends on the location of '/' character in
a pathname.)
Our TarWriter first attempt to use UStar extension and then fallback to
PAX extension.
But there's a bug in UStar header creation. "Suffix" part must be a NUL-
terminated string, but we didn't handle it correctly. As a result, if
your filename just 100 characters long, the last character was droppped.
This patch fixes the issue.
Differential Revision: https://reviews.llvm.org/D38149
llvm-svn: 314349
Summary:
*In-source builds* of LLVM, in which a user invokes `cmake` from within the
LLVM source directory, or invokes `cmake -B/path/to/source/dir/of/llvm`,
are explicitly checked for and disallowed by LLVM's `CMakeLists.txt`.
*In-tree builds*, on the other hand, refer to when the source directories
of projects such as Clang are nested within the `llvm/tools` source
directory. These are not disallowed, and are in fact a common way of
building LLVM and Clang.
Revise the comment to match the logic underneath it: it checks for an
"in-source build", not an "in-tree build".
Reviewers: beanz
Reviewed By: beanz
Subscribers: mgorny
Differential Revision: https://reviews.llvm.org/D38317
llvm-svn: 314348
FileOutputBuffer::create() attempts to remove a target file if the file
is a regular one, which results in an unexpected result in a failure
scenario.
If something goes wrong and the user of FileOutputBuffer decides to not
call commit(), it leaves nothing. An existing file is removed, and no
new file is created.
What we should do is to atomically replace an existing file with a new
file using rename(), so that it wouldn't remove an existing file without
creating a new one.
Differential Revision: https://reviews.llvm.org/D38283
llvm-svn: 314345
This commit allows the outliner to avoid saving and restoring the link register
on AArch64 when it is dead within an entire class of candidates.
This introduces changes to the way the outliner interfaces with the target.
For example, the target now interfaces with the outliner using a
MachineOutlinerInfo struct rather than by using getOutliningCallOverhead and
getOutliningFrameOverhead.
This also improves several comments on the outliner's cost model.
https://reviews.llvm.org/D36721
llvm-svn: 314341
Removes semicolons after if {} blocks, function definitions, etc.
I was able to apply the large OMPT patch cleanly on top of this one
with no conflicts.
llvm-svn: 314340
ExternalASTMerger has hitherto relied on being able to look up
any Decl through its named DeclContext chain. This works for
many cases, but causes problems for function-local structs,
which cannot be looked up in their containing FunctionDecl. An
example case is
void f() {
{ struct S { int a; }; }
{ struct S { bool b; }; }
}
It is not possible to lookup either of the two Ses individually
(or even to provide enough information to disambiguate) after
parsing is over; and there is typically no need to, since they
are invisible to the outside world.
However, ExternalASTMerger needs to be able to complete either
S on demand. This led to an XFAIL on test/Import/local-struct,
which this patch removes. The way the patch works is:
It defines a new data structure, ExternalASTMerger::OriginMap,
which clients are expected to maintain (default-constructing
if the origin does not have an ExternalASTMerger servicing it)
As DeclContexts are imported, if they cannot be looked up by
name they are placed in the OriginMap. This allows
ExternalASTMerger to complete them later if necessary.
As DeclContexts are imported from an origin that already has
its own OriginMap, the origins are forwarded – but only for
those DeclContexts that are actually used. This keeps the
amount of stored data minimal.
The patch also applies several improvements from review:
- Thoroughly documents the interface to ExternalASTMerger;
- Adds optional logging to help track what's going on; and
- Cleans up a bunch of braces and dangling elses.
Differential Revision: https://reviews.llvm.org/D38208
llvm-svn: 314336
Summary:
According to https://gcc.gnu.org/wiki/SplitStacks, the linker expects a zero-sized .note.GNU-split-stack section if split-stack is used (and also .note.GNU-no-split-stack section if it also contains non-split-stack functions), so it can handle the cases where a split-stack function calls non-split-stack function.
This change adds the sections if needed.
Fixes PR #34670.
Reviewers: thanm, rnk, luqmana
Reviewed By: rnk
Subscribers: llvm-commits
Patch by Cherry Zhang <cherryyz@google.com>
Differential Revision: https://reviews.llvm.org/D38051
llvm-svn: 314335
We already have zeroable bits in an APInt. We might as well use that instead of checking for an all zero BUILD_VECTOR.
Differential Revision: https://reviews.llvm.org/D37950
llvm-svn: 314332
In some cases the result psadbw is smaller than the type of the add that started the match. Currently in these cases we are using a smaller add and inserting the result.
If we instead combine the psadbw with zeros and use the full size add we can take advantage of implicit zeroing we get if we emit a narrower move before the add.
In a future patch, I want to make isel aware that the psadbw itself already zeroed the upper bits and remove the move entirely.
Differential Revision: https://reviews.llvm.org/D37453
llvm-svn: 314331
ToolChain::TranslateArgs() returns nullptr if no changes are performed.
This would currently mean that OpenMPArgs are lost. Patch fixes this
by falling back to simply using OpenMPArgs in that case.
Differential Revision: https://reviews.llvm.org/D38259
llvm-svn: 314330
AuxTriple is not set if host and device share a toolchain. Also,
removing an argument modifies the DAL which needs to be returned
for future use.
(Move tests back to offload-openmp.c as they are not related to GPUs.)
Differential Revision: https://reviews.llvm.org/D38258
llvm-svn: 314329
Parsing the argument after -Xopenmp-target allocates memory that needs
to be freed. Associate it with the final DerivedArgList after we know
which one will be used.
Differential Revision: https://reviews.llvm.org/D38257
llvm-svn: 314328
https://reviews.llvm.org/rL299952 merged '>>>' tokens into a single
JavaRightLogicalShift token. This broke formatting of generics nested more than
two deep, e.g. Foo<Bar<Baz>>> because the '>>>' now weren't three '>' for
parseAngle().
Luckily, just deleting JavaRightLogicalShift fixes things without breaking the
test added in r299952, so do that.
https://reviews.llvm.org/D38291
llvm-svn: 314325
reductions.
If both operands of the newly created SelectInst are Undefs the
resulting operation is also Undef, not SelectInst. It may cause crashes
when trying to propagate IR flags because function expects exactly
SelectInst instruction, nothing else.
llvm-svn: 314323
Summary:
__builtion___clear_cache maps to clear_cache function. On Linux,
clear_cache functions makes a syscall and does an abort if syscall fails.
Replace the abort by an assert so that non-debug builds do not abort
if the syscall fails.
Fixes PR34588.
Reviewers: rengolin, compnerd, srhines, peter.smith, joerg
Reviewed By: rengolin
Subscribers: aemerson, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D37788
llvm-svn: 314322
These changes faciliate positive behavior for arithmetic based select
expressions that match its translation criteria, keeping code size gated to
neutral or improved scenarios.
Patch by Michael Berg <michael_c_berg@apple.com>!
Differential Revision: https://reviews.llvm.org/D38263
llvm-svn: 314320
Summary:
Found when testing stage-2 build with D38101.
```
In file included from /build/llvm/lib/Support/Path.cpp:1045:
/build/llvm/lib/Support/Unix/Path.inc:648:14: error: comparison 'uint64_t' (aka 'unsigned long') > 18446744073709551615 is always false [-Werror,-Wtautological-constant-compare]
if (length > std::numeric_limits<size_t>::max()) {
~~~~~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
`size_t` is `uint64_t` here, apparently, thus any `uint64_t` value
always fits into `size_t`.
Initial patch was to use some preprocessor logic to
not check if the size is known to fit at compile time.
But Zachary Turner suggested using this approach.
Reviewers: Bigcheese, rafael, zturner, mehdi_amini
Reviewed by (via email): zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38132
llvm-svn: 314312
Summary:
The current implementation of the allocator returning freed memory
back to OS (controlled by allocator_release_to_os_interval_ms flag)
requires sorting of the free chunks list, which has two major issues,
first, when free list grows to millions of chunks, sorting, even the
fastest one, is just too slow, and second, sorting chunks in place
is unacceptable for Scudo allocator as it makes allocations more
predictable and less secure.
The proposed approach is linear in complexity (altough requires quite
a bit more temporary memory). The idea is to count the number of free
chunks on each memory page and release pages containing free chunks
only. It requires one iteration over the free list of chunks and one
iteration over the array of page counters. The obvious disadvantage
is the allocation of the array of the counters, but even in the worst
case we support (4T allocator space, 64 buckets, 16 bytes bucket size,
full free list, which leads to 2 bytes per page counter and ~17M page
counters), requires just about 34Mb of the intermediate buffer (comparing
to ~64Gb of actually allocated chunks) and usually it stays under 100K
and released after each use. It is expected to be a relatively rare event,
releasing memory back to OS, keeping the buffer between those runs
and added complexity of the bookkeeping seems unnesessary here (it can
always be improved later, though, never say never).
The most interesting problem here is how to calculate the number of chunks
falling into each memory page in the bucket. Skipping all the details,
there are three cases when the number of chunks per page is constant:
1) P >= C, P % C == 0 --> N = P / C
2) C > P , C % P == 0 --> N = 1
3) C <= P, P % C != 0 && C % (P % C) == 0 --> N = P / C + 1
where P is page size, C is chunk size and N is the number of chunks per
page and the rest of the cases, where the number of chunks per page is
calculated on the go, during the page counter array iteration.
Among the rest, there are still cases where N can be deduced from the
page index, but they require not that much less calculations per page
than the current "brute force" way and 2/3 of the buckets fall into
the first three categories anyway, so, for the sake of simplicity,
it was decided to stick to those two variations. It can always be
refined and improved later, should we see that brute force way slows
us down unacceptably.
Reviewers: eugenis, cryptoad, dvyukov
Subscribers: kubamracek, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D38245
llvm-svn: 314311
Before this change using any of the -name*= command line options with an output
directory would result in a single file (functions.txt/functions.html)
containing the coverage for those specific functions. Now you get the same
directory structure as when not using any -name*= options.
Differential Revision: https://reviews.llvm.org/D38280
llvm-svn: 314310
Summary:
The root Uri is the workspace location and will be useful in the context of
indexing. We could also add more things to InitializeParams in order to
configure Clangd for C/C++ sepecific extensions.
Reviewers: ilya-biryukov, bkramer, krasimir, Nebiroth
Reviewed By: ilya-biryukov
Subscribers: ilya-biryukov
Tags: #clang-tools-extra
Differential Revision: https://reviews.llvm.org/D38093
llvm-svn: 314309
This was intended to be no-functional-change, but it's not - there's a test diff.
So I thought I should stop here and post it as-is to see if this looks like what was expected
based on the discussion in PR34603:
https://bugs.llvm.org/show_bug.cgi?id=34603
Notes:
1. The test improvement occurs because the existing 'LateSimplifyCFG' marker is not carried
through the recursive calls to 'SimplifyCFG()->SimplifyCFGOpt().run()->SimplifyCFG()'.
The parameter isn't passed down, so we pick up the default value from the function signature
after the first level. I assumed that was a bug, so I've passed 'Options' down in all of the
'SimplifyCFG' calls.
2. I split 'LateSimplifyCFG' into 2 bits: ConvertSwitchToLookupTable and KeepCanonicalLoops.
This would theoretically allow us to differentiate the transforms controlled by those params
independently.
3. We could stash the optional AssumptionCache pointer and 'LoopHeaders' pointer in the struct too.
I just stopped here to minimize the diffs.
4. Similarly, I stopped short of messing with the pass manager layer. I have another question that
could wait for the follow-up: why is the new pass manager creating the pass with LateSimplifyCFG
set to true no matter where in the pipeline it's creating SimplifyCFG passes?
// Create an early function pass manager to cleanup the output of the
// frontend.
EarlyFPM.addPass(SimplifyCFGPass());
-->
/// \brief Construct a pass with the default thresholds
/// and switch optimizations.
SimplifyCFGPass::SimplifyCFGPass()
: BonusInstThreshold(UserBonusInstThreshold),
LateSimplifyCFG(true) {} <-- switches get converted to lookup tables and loops may not be in canonical form
If this is unintended, then it's possible that the current behavior of dropping the 'LateSimplifyCFG'
setting via recursion was masking this bug.
Differential Revision: https://reviews.llvm.org/D38138
llvm-svn: 314308