I implemented isTruncateFree in rL313533, this patch fixes the logic
to match my comment, as the previous logic was too general. Now the
only truncates that are free are i64 -> i32.
Differential Revision: https://reviews.llvm.org/D38234
llvm-svn: 314280
This is necessary, but not sufficient, for having working SJLJ exception
handling on x86_64.
Differential Revision: https://reviews.llvm.org/D38254
llvm-svn: 314277
The callsite value is already stored indexed from 0 in
the _Unwind_Context struct. When accessed via the functions
_Unwind_GetIP and _Unwind_SetIP, the value is indexed from 1,
but those functions handle the offseting. When reading directly
from the struct here, we shouldn't subtract 1.
This matches the code generated by the ARM target, where SJLJ
exception handling is used by default on iOS.
This makes clang-built object files for 32 bit x86 mingw work when
linked with libgcc/libstdc++.
Differential Revision: https://reviews.llvm.org/D38251
llvm-svn: 314276
Summary:
A new FDR metadata record will support logging a function call argument;
appending multiple metadata records will represent a sequence of arguments
meaning that "holes" are not representable by the buffer format. Each
call argument is currently a 64-bit value (useful for "this" pointers and
synchronization objects).
If present, we put this argument to the function call "entry" record it
belongs to, and alter its type to notify the user of its presence.
Reviewers: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32840
llvm-svn: 314269
This patch tries to transform cases like:
for (unsigned i = 0; i < N; i += 2) {
bool c0 = (i & 0x1) == 0;
bool c1 = ((i + 1) & 0x1) == 1;
}
To
for (unsigned i = 0; i < N; i += 2) {
bool c0 = true;
bool c1 = true;
}
This commit also update test/Transforms/IndVarSimplify/replace-srem-by-urem.ll to prevent constant folding.
Differential Revision: https://reviews.llvm.org/D38272
llvm-svn: 314266
Summary:
Don't bail out on constant divisors for divisions that can be narrowed without
introducing control flow . This gives us a 32 bit multiply instead of an
emulated 64 bit multiply in the generated PTX assembly.
Reviewers: jlebar
Subscribers: jholewinski, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38265
llvm-svn: 314253
Summary:
In rare cases, loads that don't get prefetched that were marked as
strided loads could cause a crash if they occurred in a loop with other
colliding loads.
Reviewers: mcrosier
Subscribers: aemerson, rengolin, javed.absar, kristof.beyls
Differential Revision: https://reviews.llvm.org/D38261
llvm-svn: 314252
Summary:
This addresses a correctness bug for LD[1234]*_POST opcodes that have
the prefetcher fix applied to them: the base register was not being
written back from the temp after being incremented, so it would appear
to never be incremented.
Also, fix some opcode tag computations based on some updated HW details
to get better tag avoidance and thus better prefetcher performance.
Reviewers: mcrosier
Subscribers: aemerson, rengolin, javed.absar, kristof.beyls
Differential Revision: https://reviews.llvm.org/D38256
llvm-svn: 314251
This hook is called after register allocation with two physical registers. We don't need a separate instruction at that time to force register class constraints. I left in the assert though. We also have a fatal error in X86MCCodeEmitter if we ever encode an H-reg and a REX prefix.
llvm-svn: 314248
Previously these were being included as both imports and
exports, with the import being satisfied by the export
(or some strong symbol) at runtime. However proved
unnecessary and actually complicated linking as it meant
there was not a 1-to-1 mapping between a wasm function
/global index and a linker symbol.
Differential Revision: https://reviews.llvm.org/D38246
llvm-svn: 314245
In the past while, I've committed a number of patches in the PowerPC back end
aimed at eliminating comparison instructions. However, this causes some failures
in proprietary source and these issues are not observed in SPEC or any open
source packages I've been able to run.
As a result, I'm pulling the entire series and will refactor it to:
- Have a single entry point for easy control
- Have fine-grained control over which patterns we transform
A side-effect of this is that test cases for these patches (and modified by
them) are XFAIL-ed. This is a temporary measure as it is counter-productive
to remove/modify these test cases and then have to modify them again when
the refactored patch is recommitted.
The failure will be investigated in parallel to the refactoring effort and
the recommit will either have a fix for it or will leave this transformation
off by default until the problem is resolved.
llvm-svn: 314244
This patch expands the support of lowerInterleavedStore to {8|16|32}x8i stride 3.
LLVM creates suboptimal shuffle code-gen for AVX2. In overall, this patch is a specific fix for the pattern (Strid=3 VF={8|16|32}) .
This patch is part two of two patches and it covers the store (interlevaed) side.
The patch goal is to optimize the following sequence:
a0 a1 a2 a3 a4 a5 a6 a7
b0 b1 b2 b3 b4 b5 b6 b7
c0 c1 c2 c3 c4 c5 c6 c7
into
a0 b0 c0 a1 b1 c1 a2 b2
c2 a3 b3 c3 a4 b4 c4 a5
b5 c5 a6 b6 c6 a7 b7 c7
Reviewers:
zvi
guyblank
dorit
Ayal
Differential Revision: https://reviews.llvm.org/D37117
Change-Id: I56ced8bcbea809a37654060771911ade20246ccc
llvm-svn: 314234
If this transformation succeeds, we're going to remove our dependency on the shift by rewriting the and. So it doesn't matter how many uses the shift has.
This distributes the one use check to other transforms in foldICmpAndConstConst that do need it.
Differential Revision: https://reviews.llvm.org/D38206
llvm-svn: 314233
It is useful for the symbol to contain the index of the
function of global it represents in the function/global
index space.
For imports we also store the import index so that the
linker can find, for example, the signature of the
corresponding function, which is defined by the import
In the long run we need to decide whether this API
surface should be closer to binary (where imported
functions are seperate) or the wasm spec (where the
function index space is unified).
Differential Revision: https://reviews.llvm.org/D38189
llvm-svn: 314230
When dsymutil generates the companion file, its strips all unnecessary
sections by omitting their body and setting the offset in their
corresponding load command to zero.
One such section is the .eh_frame section, as it contains runtime
information rather than debug information and is part of the __TEXT
segment. When reading this section, we would just read the number of
bytes specified in the load command, starting from offset 0 (i.e. the
beginning of the file).
Rather than trying to parse this obviously invalid section, dwarfdump
now skips this.
Differential revision: https://reviews.llvm.org/D38135
llvm-svn: 314208
The XOP rotations act as ROTL with +ve values and ROTR with -ve values, which means that we can treat them all as ROTL with unsigned modulo. We already check that we're only trying to lower as ROTL for XOP rotations.
Differential Revision: https://reviews.llvm.org/D37949
llvm-svn: 314207
This is a 2nd attempt at:
https://reviews.llvm.org/rL310055
...which was reverted at rL310123 because of PR34074:
https://bugs.llvm.org/show_bug.cgi?id=34074
In this version, we break out of the inner loop after we successfully merge and kill a pair of stores. In the
earlier rev, we were continuing instead, which meant we could process the invalid info from a now dead store.
Original commit message (authored by Filipe Cabecinhas):
This fixes PR31777.
If both stores' values are ConstantInt, we merge the two stores
(shifting the smaller store appropriately) and replace the earlier (and
larger) store with an updated constant.
In the future we should also support vectors of integers. And maybe
float/double if we can.
Differential Revision: https://reviews.llvm.org/D30703
llvm-svn: 314206
Removing X86 broadcast(f/i)32x2 intrinsics from llvm.
Adding autoUpgrade support.
Moving matching tests from avx512dq-intrinsics.ll to avx512dq-intrinsics-upgrade.ll and from avx512dqvl-intrinsics.ll to avx512dqvl-intrinsics-upgrade.ll.
Differential Revision: https://reviews.llvm.org/D38220
llvm-svn: 314195
Usually the frontend communicates the size of wchar_t via metadata and
we can optimize wcslen (and possibly other calls in the future). In
cases without the wchar_size metadata we would previously try to guess
the correct size based on the target triple; however this is fragile to
keep up to date and may miss users manually changing the size via flags.
Better be safe and stop guessing and optimizing if the frontend didn't
communicate the size.
Differential Revision: https://reviews.llvm.org/D38106
llvm-svn: 314185
This was an oversight in the original backend data layout.
The AVR architecture does not have the concept of unaligned loads - all
loads/stores from all addresses are aligned to one byte.
Discovered in avr-rust issue #64https://github.com/avr-rust/rust/issues/64
Patch By Gergo Erdi.
llvm-svn: 314179
Summary:
Sanitizer blacklist entries currently apply to all sanitizers--there
is no way to specify that an entry should only apply to a specific
sanitizer. This is important for Control Flow Integrity since there are
several different CFI modes that can be enabled at once. For maximum
security, CFI blacklist entries should be scoped to only the specific
CFI mode(s) that entry applies to.
Adding section headers to SpecialCaseLists allows users to specify more
information about list entries, like sanitizer names or other metadata,
like so:
[section1]
fun:*fun1*
[section2|section3]
fun:*fun23*
The section headers are regular expressions. For backwards compatbility,
blacklist entries entered before a section header are put into the '[*]'
section so that blacklists without sections retain the same behavior.
SpecialCaseList has been modified to also accept a section name when
matching against the blacklist. It has also been modified so the
follow-up change to clang can define a derived class that allows
matching sections by SectionMask instead of by string.
Reviewers: pcc, kcc, eugenis, vsk
Reviewed By: eugenis, vsk
Subscribers: vitalybuka, llvm-commits
Differential Revision: https://reviews.llvm.org/D37924
llvm-svn: 314170
It leads to some improvements, but also a regression for the simple
case, so it's not clearly a good idea.
test/CodeGen/ARM/vcvt.ll now has test coverage to show the difference.
Ultimately, the right solution is probably to custom-lower fp-to-int
conversions, to something like ARMISD::VCVT_F32_S32 plus a bitcast.
It's hard to do the right thing when the implicit bitcast isn't visible
to DAG transforms.
llvm-svn: 314169
R12 is used for the SwiftError parameter. It is no longer a CSR as it
is used for transfer the SwiftError, and the caller must preserve it if
they need to.
llvm-svn: 314165
All this optimization cares about is knowing how many low bits of LHS is known to be zero and whether that means that the result is 0 or greater than the RHS constant. It doesn't matter where the zeros in the low bits came from. So we don't need to specifically look for an AND. Instead we can use known bits.
Differential Revision: https://reviews.llvm.org/D38195
llvm-svn: 314153
As far as I know SUBREG_TO_REG is stating that the upper bits are 0. But if we are just converting the GR32 with no checks, then we have no reason to say the upper bits are 0.
I don't really know how to test this today since I can't find anything that looks that closely at SUBREG_TO_REG. The test changes here seems to be some perturbance of register allocation.
Differential Revision: https://reviews.llvm.org/D38001
llvm-svn: 314152
The 1st attempt at this:
https://reviews.llvm.org/rL314117
was reverted at:
https://reviews.llvm.org/rL314118
because of bot fails for clang tests that were checking optimized IR. That should be fixed with:
https://reviews.llvm.org/rL314144
...so try again.
Original commit message:
The transform to convert an extract-of-a-select-of-vectors was added at:
https://reviews.llvm.org/rL194013
And a question about the validity of this transform was raised in the review:
https://reviews.llvm.org/D1539:
...but not answered AFAICT>
Most of the motivating cases in that patch are now handled by other combines. These are the tests that were added with
the original commit, but they are not regressing even after we remove the transform in this patch.
The diffs we see after removing this transform cause us to avoid increasing the instruction count, so we don't want to do
those transforms as canonicalizations.
The motivation for not turning a vector-select-of-vectors into a scalar operation is shown in PR33301:
https://bugs.llvm.org/show_bug.cgi?id=33301
...in those cases, we'll get vector ops with this patch rather than the vector/scalar mix that we currently see.
Differential Revision: https://reviews.llvm.org/D38006
llvm-svn: 314147
This teach simplifyDemandedBits to handle constant splat vector shifts.
This required changing some uses of getZExtValue to getLimitedValue since we can't rely on legalization using getShiftAmountTy for the shift amount.
I believe there may have been a bug in the ((X << C1) >>u ShAmt) handling where we didn't check if the inner shift was too large. I've fixed that here.
I had to add new patterns to ARM because the zext/sext the patterns were trying to look for got turned into an any_extend with this patch. Happy to split that out too, but not sure how to test without this change.
Differential Revision: https://reviews.llvm.org/D37665
llvm-svn: 314139
Add two callbacks to MachineEvaluator, so that specific implementations
can specify more details about register classes:
- composeWithSubRegIndex(RC,Idx), to provide the register class for a
register from RC used in conjunction with a subregister index Idx.
- getPhysRegBitWidth(Reg), to provide the size in bits of the given
physical register.
llvm-svn: 314136
This replaces the large number of patterns that handle every possible case of zeroing after a masked compare with a few simpler patterns that use a predicate to check for a masked compare producer.
This is similar to what we do for detecting free GR32->GR64 zero extends and free xmm->ymm/zmm zero extends.
This shrinks the isel table from ~590k to ~531k. This is a roughly 10% reduction in size.
Differential Revision: https://reviews.llvm.org/D38217
llvm-svn: 314133
Since now SCEV can handle 'urem', an 'urem' is a better canonical form than an 'srem' because it has well-defined behavior
This is a follow up of D34598
Differential Revision: https://reviews.llvm.org/D38072
llvm-svn: 314125
The transform to convert an extract-of-a-select-of-vectors was added at:
rL194013
And a question about the validity of this transform was raised in the review:
https://reviews.llvm.org/D1539:
...but not answered AFAICT>
Most of the motivating cases in that patch are now handled by other combines. These are the tests that were added with
the original commit, but they are not regressing even after we remove the transform in this patch.
The diffs we see after removing this transform cause us to avoid increasing the instruction count, so we don't want to do
those transforms as canonicalizations.
The motivation for not turning a vector-select-of-vectors into a scalar operation is shown in PR33301:
https://bugs.llvm.org/show_bug.cgi?id=33301
...in those cases, we'll get vector ops with this patch rather than the vector/scalar mix that we currently see.
Differential Revision: https://reviews.llvm.org/D38006
llvm-svn: 314117
Summary:
This code iterates the 'Orders' vector in parallel with the DbgValue
list, emitting all DBG_VALUEs that occurred between the last IR order
insertion point and the next insertion point. This assumes the
SDDbgValue list is sorted in IR order, which it usually is. However, it
is not sorted when a node with a debug value is replaced with another
one. When this happens, TransferDbgValues is called, and the new value
is added to the end of the list.
The problem can be solved by stably sorting the list by IR order.
Reviewers: aprantl, Ka-Ka
Reviewed By: aprantl
Subscribers: MatzeB, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D38197
llvm-svn: 314114
This patch expands the support of lowerInterleavedStore to 8x8i stride 4.
LLVM creates suboptimal shuffle code-gen for AVX2.
In overall, this patch is a specific fix for the pattern (Strid=4 VF=8) and we plan to include more patterns in the future.
The patch goal is to optimize the following sequence:
At the end of the computation, we have xmm2, xmm0, xmm12 and xmm3 holding
each 8 chars:
c0, c1, , c7
m0, m1, , m7
y0, y1, , y7
k0, k1, ., k7
And these need to be transposed/interleaved and stored like so:
c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3 ....
Reviewers
DavidKreitzer
Farhana
zvi
igorb
guyblank
RKSimon
Ayal
Differential Revision: https://reviews.llvm.org/D36058
Change-Id: I3cc5c2ca5d6318901c192a4428493b99ef424c32
llvm-svn: 314109
As mentioned in https://reviews.llvm.org/D33718, this simply adds another
pattern to the compare elimination sequence and is committed without a
differential review.
llvm-svn: 314106
Summary:
Right now there are two functions with the same name, one does the work
and the other one returns true if expansion is needed. Rename
TargetTransformInfo::expandMemCmp to make it more consistent with other
members of TargetTransformInfo.
Remove the unused Instruction* parameter.
Differential Revision: https://reviews.llvm.org/D38165
llvm-svn: 314096
This required changing the ISD opcode for these instructions to have the commutable operands first and the addend last. This way tablegen can autogenerate the additional patterns for us.
llvm-svn: 314083
This patch acts as a reverse to combineBitcastvxi1 - bitcasting a scalar integer to a boolean vector and extending it 'in place' to the requested legal type.
Currently this doesn't handle AVX512 at all - but the current mask register approach is lacking for some cases.
Differential Revision: https://reviews.llvm.org/D35320
llvm-svn: 314076
As mentioned in https://reviews.llvm.org/D33718, this simply adds another
pattern to the compare elimination sequence and is committed without a
differential review.
llvm-svn: 314073
We use a v16i32/v16f32 compare instead and truncate the result. We already did this for the unmasked version, but were missing the version with 'and'.
llvm-svn: 314072
This fixes the avr-rust issue (#75) with floating-point comparisons generating broken code.
By default, LLVM assumes these comparisons return 32-bit values, but ours are 8-bit.
Patch By Thomas Backman.
llvm-svn: 314070
The code wasn't yelling at the user when there's a reference
from a DIGlobalVariableExpression. Thanks to Adrian for the
reduced testcase. Fixes PR34672.
llvm-svn: 314069
This is a follow-up from D38181 (r314023). We have to put 64-bit
constants into a register using a separate instruction, so we
should try harder to avoid that.
From what I see, we're not likely to encounter this pattern in the
DAG because the upstream setcc combines from this don't (usually?)
produce this pattern. If we fix that, then this will become more
relevant. Since the cost of handling this case is just loosening
the predicate of the existing fold, we might as well do it now.
llvm-svn: 314064
As mentioned in https://reviews.llvm.org/D33718, this simply adds another
pattern to the compare elimination sequence and is committed without a
differential revision.
llvm-svn: 314062
As mentioned in https://reviews.llvm.org/D33718, this simply adds another
pattern to the compare elimination sequence and is committed without a
differential revision.
llvm-svn: 314060
As mentioned in https://reviews.llvm.org/D33718, this simply adds another
pattern to the compare elimination sequence and is committed without a
differential revision.
llvm-svn: 314055
Fixed suboptimal encoding of instruction memory operand when assembler is used to select 32 bit fixup rather than 8 bit immediate for encoding memory offset value.
Differential Revision: https://reviews.llvm.org/D38117
llvm-svn: 314044
This patch just adds the missing information to the P9 scheduling model to allow
the model to be marked as complete.
The model has been verified against P9 documentation. The model was verified
with utils/schedcover.py.
Differential Revision: https://reviews.llvm.org/D35695
llvm-svn: 314026
The (non-)obvious win comes from saving 3 bytes by using the 0x83 'and' opcode variant instead of 0x81.
There are also better improvements based on known-bits that allow us to eliminate the mask entirely.
As noted, this could be extended. There are potentially other wins from always shifting first, but doing
that reveals a tangle of problems in other pattern matching. We do this transform generically in
instcombine, but we often have icmp IR that doesn't match that pattern, so we must account for this
in the backend.
Differential Revision: https://reviews.llvm.org/D38181
llvm-svn: 314023
The result of the isSignBitCheck isn't used anywhere else and this allows us to share the m_APInt call in the likely case that it isn't a sign bit check.
llvm-svn: 314018