shared pointers.
Changed the ExecutionContext over to use shared pointers for
the target, process, thread and frame since these objects can
easily go away at any time and any object that was holding onto
an ExecutionContext was running the risk of using a bad object.
Now that the shared pointers for target, process, thread and
frame are just a single pointer (they all use the instrusive
shared pointers) the execution context is much safer and still
the same size.
Made the shared pointers in the the ExecutionContext class protected
and made accessors for all of the various ways to get at the pointers,
references, and shared pointers.
llvm-svn: 140298
a file when the target has a triple with an unknown vendor and/or OS and the
slice of the file itself has a valid vendor and/or OS.
The Module now adopts the ObjectFile's architecture after a valid architecture
has been loaded to make sure the module matches the object file.
llvm-svn: 140236
Fix the RegularExpression class so it has a real copy constructor.
Fix the breakpoint setting with multiple shared libraries so it makes
one breakpoint not one per shared library.
Add SBFileSpecList, to be used to expose the above to the SB interface (not done yet.)
llvm-svn: 140225
allocate memory in a process that did not support
expression execution. Also improved detection of
whether or not a process can execute expressions.
llvm-svn: 140202
stdarg formats to use __attribute__ format so the compiler can flag
incorrect uses. Fix all incorrect uses. Most of these are innocuous,
a few were resulting in crashes.
llvm-svn: 140185
__attribute__ format so the compiler knows that this method takes
printf style formatter arguments and checks that it's being used
correctly. Fix a couple dozen incorrect SetErrorStringWithFormat()
calls throughout the sources.
llvm-svn: 140115
used to do this because we needed to find the shared pointer for a .o
file when the .o file's module was needed in a SymbolContext since the
module in a symbol context was a shared pointer. Now that we are using
intrusive pointers we don't have this limitation anymore since any
instrusive shared pointer can be made from a pointer to an object
all on its own.
Also switched over to having the Module and SymbolVendor use shared
pointers to their object files as had a leak on MacOSX when the
SymbolVendor's object file wasn't the same as the Module's (debug info
in a stand along file (dSYM file)). Now everything will correctly clean
itself up when the module goes away after an executable gets rebuilt.
Now we correctly get rid of .o files that are used with the DWARF with
debug map executables on subsequent runs since the only shared pointer
to the object files in from the DWARF symbol file debug map parser, and
when the module gets replaced, it destroys to old one along with all .o
files.
Also added a small optimization when using BSD archives where we will
remove old BSD containers from the shared list when they are outdated.
llvm-svn: 140002
ModuleSP
Module::GetSP();
Since we are now using intrusive ref counts, we can easily turn any
pointer to a module into a shared pointer just by assigning it.
llvm-svn: 139984
We had some cases where getting the shared pointer for a module from
the global module list was causing a performance issue when debugging
with DWARF in .o files. Now that the module uses intrusive ref counts,
we can easily convert any pointer to a shared pointer.
llvm-svn: 139983
data sent back to the debugger. On the debugger side, use the opportunity during the
StopInfoMachException::CreateStopReasonWithMachException() method to set the hardware index
for the very watchpoint location.
llvm-svn: 139975
the arm emulate instruction unwinder so you can leave it
on by default and not be overwhelmed. Set verbose mode to
get the full story on how the unwindplans were created.
llvm-svn: 139897
UnwindPlan for unwinding from the first instruction of an otherwise
unknown function call (GetUnwindPlanArchitectureDefaultAtFunctionEntry()).
Update RegisterContextLLDB::GetFullUnwindPlanForFrame() to detect the
case of a frame 0 at address 0x0 which indicates that we jumped through
a NULL function pointer. Use the ABI's FunctionEntryUnwindPlan to
find the caller frame.
These changes make it so lldb can identify the calling frame correctly
in code like
int main ()
{
void (*f)(void) = 0;
f();
}
llvm-svn: 139760
Address ranges are now split up into two different tables:
- one in DWARFDebugInfo that is compile unit specific
- one in each DWARFCompileUnit that has exact function DIE offsets
This helps keep the size of the aranges down since the main table will get
uniqued and sorted and have consecutive ranges merged. We then only parse the
compile unit one on demand once we have determined that a compile unit contains
the address in question. We also now use the .debug_aranges section if there
is one instead of always indexing the DWARF manually.
NameToDIE now uses a UniqueCStringMap<dw_offset> map instead of a std::map.
std::map is very bulky as each node has 3 pointers and the key and value types.
This gets our NameToDIE entry down to 12 bytes each instead of 48 which saves
us a lot of memory when we have very large DWARF.
DWARFDebugAranges now has a smaller footprint for each range it contains to
save on memory.
llvm-svn: 139557
One fixes a trailing comma bug (g++ doesn't like them)
The other gets the Error from the result of an expression evaluation and uses it as the error for the Process::LoadImage() method.
llvm-svn: 139336
Set the default Source File & line to main (if it can be found.) at startup. Selecting the current thread & or frame resets
the current source file & line, and "source list" as well as the breakpoint command "break set -l <NUM>" will use the
current source file.
llvm-svn: 139323
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
register names when dumping variable locations and location lists. Also did
some cleanup where "int" types were being used for "lldb::RegisterKind"
values.
llvm-svn: 138988
DWARF accelerator table sections to the DWARF parser. These sections are similar
to the .debug_pubnames and .debug_pubtypes, but they are designed to be hash tables
that are saved to disc in a way that the sections can just be loaded into memory
and used without any work on the debugger side. The .debug_pubnames and .debug_pubtypes
sections are not ordered, contain a copy of the name in the section itself which
makes these sections quite large, they only include publicly exported names (so no
static functions, no types defined inside functions), many compilers put different
information in them making them very unreliable so most debugger ignore these sections
and parse the DWARF on their own. The tables must also be parsed and sorted in order
to be used effectively. The new sections can be quickly loaded and very efficiently be used
to do name to DIE lookups with very little up front work. The format of these new
sections will be changing while we work out the bugs, but we hope to have really
fast name to DIE lookups soon.
llvm-svn: 138979
file that had a symbol that had a section specified where the section had
zero size. We now honor this section definition for the symbol and don't
assert anymore.
llvm-svn: 138646
plug-ins are add on plug-ins for the lldb_private::Process class that can add
thread contexts that are read from memory. It is common in kernels to have
a lot of threads that are not currently executing on any cores (JTAG debugging
also follows this sort of thing) and are context switched out whose state is
stored in memory data structures. Clients can now subclass the OperatingSystem
plug-ins and then make sure their Create functions correcltly only enable
themselves when the right binary/target triple are being debugged. The
operating system plug-ins get a chance to attach themselves to processes just
after launching or attaching and are given a lldb_private::Process object
pointer which can be inspected to see if the main executable, target triple,
or any shared libraries match a case where the OS plug-in should be used.
Currently the OS plug-ins can create new threads, define the register contexts
for these threads (which can all be different if desired), and populate and
manage the thread info (stop reason, registers in the register context) as
the debug session goes on.
llvm-svn: 138228
- reorganizing the PTS (Partial Template Specializations) in FormatManager.h
- applied a patch by Filipe Cabecinhas to make LLDB compile with GCC
Functional changes:
- fixed an issue where command type summary add for type "struct Foo" would not match any types.
currently, "struct" will be stripped off and type "Foo" will be matched.
similar behavior occurs for class, enum and union specifiers.
llvm-svn: 138020
The category is enabled by default. If you run into issues with it, disable it and the previous behavior of LLDB is restored
** This is a temporary solution. The general solution to having formatters pulled in at startup should involve going through the Platform.
Fixed an issue in type synthetic list where a category with synthetic providers in it was not shown if all the providers were regex-based
llvm-svn: 137850
If no docstring is provided, a default help text is created
LLDB will refuse to create scripted commands if the scripting language is anything but Python
Some additional comments in AppleObjCRuntimeV2.cpp to describe the memory layout expected by the dynamic type lookup code
llvm-svn: 137801
C++ methods for a function depending on how the DWARF was
created. Now we parse the class type from the definition,
and all methods that use DW_AT_specification or DW_AT_abstract_origin
attributes to point to the definition, now won't create
duplicate entries. This is in response to how clang++ creates
much different DWARF than gcc.
llvm-svn: 137737
For the default case (illegal encoding type), just return false instead of break.
A8.6.84 LDRSH (register)
A8.6.309 VLD1 (single element to all lanes)
llvm-svn: 137699