Summary: This code tries to handle the case where IBB is an EHPad, but there's an earlier check that uses PBB->hasEHPadSuccessor(). Where PBB is a predecessor of IBB. The hasEHPadSuccessor function would have visited IBB and seen that it was an EHPad and returned false. This would prevent us from reaching this code with IBB as an EHPad.
Looks like this code was originally added in rL37427 (ancient) and made dead in rL143001.
Reviewers: rnk, void, efriedma
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D57358
llvm-svn: 353375
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
Summary:
When the branch folder hoist code into a predecessor it adjust live-in's
in the blocks it hoist code from. However it fail to handle hoisted code
that contain a defed register that originally is live-in in the block
through a super register.
This is fixed by replacing the live-in handling code with calls to
utility functions in LivePhysRegs.
Reviewers: kparzysz, gberry, MatzeB, uweigand, aprantl
Reviewed By: kparzysz
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47529
llvm-svn: 334163
Summary:
`getEHScopeMembership()` function is used not only for funclet-based
EHs; they apply to all EH schemes that use the scoped IR
(catchpad/cleanuppad/...). D47005 (rL333045) changed some of the uses of
the term 'funclet' to 'EH scopes' in case they apply to all scoped EH,
and this fixes more of them. For `FuncletLayout` pass, I left it as is
because the pass is only used for funclet-based EH.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47611
llvm-svn: 333711
Summary:
There are functions using the term 'funclet' to refer to both
1. an EH scopes, the structure of BBs that starts with
catchpad/cleanuppad and ends with catchret/cleanupret, and
2. a small function that gets outlined in AsmPrinter, which is the
original meaning of 'funclet'.
So far the two have been the same thing; EH scopes are always outlined
in AsmPrinter as funclets at the end of the compilation pipeline. But
now wasm also uses scope-based EH but does not outline those, so we now
need to correctly distinguish those two use cases in functions.
This patch splits `MachineBasicBlock::isFuncletEntry` into
`isFuncletEntry` and `isEHScopeEntry`, and
`MachineFunction::hasFunclets` into `hasFunclets` and `hasEHScopes`, in
order to distinguish the two different use cases. And this also changes
some uses of the term 'funclet' to 'scope' in `getFuncletMembership` and
change the function name to `getEHScopeMembership` because this function
is not about outlined funclets but about EH scope memberships.
This change is in the same vein as D45559.
Reviewers: majnemer, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D47005
llvm-svn: 333045
Summary:
The BranchFolding pass is currently missing opportunities to hoist
common code if the hoisted-to block contains a single conditional branch
that has register uses. This occurs somewhat frequently on AArch64 with
CBZ/TBZ opcodes.
This change also eliminates some code differences when debug info is
present since the presence of e.g. DBG_VALUE instructions in the
hoisted-to block can enable hoisting that wouldn't have occurred without
them.
Reviewers: MatzeB, rnk, kparzysz, twoh, aprantl, javed.absar
Subscribers: kristof.beyls, JDevlieghere, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D46324
llvm-svn: 332265
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Because we create a new kind of debug instruction, DBG_LABEL, we need to
check all passes which use isDebugValue() to check MachineInstr is debug
instruction or not. When expelling debug instructions, we should expel
both DBG_VALUE and DBG_LABEL. So, I create a new function,
isDebugInstr(), in MachineInstr to check whether the MachineInstr is
debug instruction or not.
This patch has no new test case. I have run regression test and there is
no difference in regression test.
Differential Revision: https://reviews.llvm.org/D45342
Patch by Hsiangkai Wang.
llvm-svn: 331844
Summary:
This patch will introduce copying of DBG_VALUE instructions
from an otherwise empty basic block to predecessor/successor
blocks in case the empty block is eliminated/bypassed. It
is currently only done in one identified situation in the
BranchFolding pass, before optimizing on empty block.
It can be seen as a light variant of the propagation done
by the LiveDebugValues pass, which unfortunately is executed
after the BranchFolding pass.
We only propagate (copy) DBG_VALUE instructions in a limited
number of situations:
a) If the empty BB is the only predecessor of a successor
we can copy the DBG_VALUE instruction to the beginning of
the successor (because the DBG_VALUE instruction is always
part of the flow between the blocks).
b) If the empty BB is the only successor of a predecessor
we can copy the DBG_VALUE instruction to the end of the
predecessor (because the DBG_VALUE instruction is always
part of the flow between the blocks). In this case we add
the DBG_VALUE just before the first terminator (assuming
that the terminators do not impact the DBG_VALUE).
A future solution, to handle more situations, could perhaps
be to run the LiveDebugValues pass before branch folding?
This fix is related to PR37234. It is expected to resolve
the problem seen, when applied together with the fix in
SelectionDAG from here: https://reviews.llvm.org/D46129
Reviewers: #debug-info, aprantl, rnk
Reviewed By: #debug-info, aprantl
Subscribers: ormris, gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D46184
llvm-svn: 331183
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
* CFI instructions do not affect code generation (they are not counted as
instructions when tail duplicating or tail merging)
* Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Added CFIInstrInserter pass:
* analyzes each basic block to determine cfa offset and register are valid
at its entry and exit
* verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
* inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D42848
llvm-svn: 330706
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This reverts r317579, originally committed as r317100.
There is a design issue with marking CFI instructions duplicatable. Not
all targets support the CFIInstrInserter pass, and targets like Darwin
can't cope with duplicated prologue setup CFI instructions. The compact
unwind info emission fails.
When the following code is compiled for arm64 on Mac at -O3, the CFI
instructions end up getting tail duplicated, which causes compact unwind
info emission to fail:
int a, c, d, e, f, g, h, i, j, k, l, m;
void n(int o, int *b) {
if (g)
f = 0;
for (; f < o; f++) {
m = a;
if (l > j * k > i)
j = i = k = d;
h = b[c] - e;
}
}
We get assembly that looks like this:
; BB#1: ; %if.then
Lloh3:
adrp x9, _f@GOTPAGE
Lloh4:
ldr x9, [x9, _f@GOTPAGEOFF]
mov w8, wzr
Lloh5:
str wzr, [x9]
stp x20, x19, [sp, #-16]! ; 8-byte Folded Spill
.cfi_def_cfa_offset 16
.cfi_offset w19, -8
.cfi_offset w20, -16
cmp w8, w0
b.lt LBB0_3
b LBB0_7
LBB0_2: ; %entry.if.end_crit_edge
Lloh6:
adrp x8, _f@GOTPAGE
Lloh7:
ldr x8, [x8, _f@GOTPAGEOFF]
Lloh8:
ldr w8, [x8]
stp x20, x19, [sp, #-16]! ; 8-byte Folded Spill
.cfi_def_cfa_offset 16
.cfi_offset w19, -8
.cfi_offset w20, -16
cmp w8, w0
b.ge LBB0_7
LBB0_3: ; %for.body.lr.ph
Note the multiple .cfi_def* directives. Compact unwind info emission
can't handle that.
llvm-svn: 317726
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
Reland r317100 with minor fix regarding ComputeCommonTailLength function in
BranchFolding.cpp. Skipping top CFI instructions block needs to executed on
several more return points in ComputeCommonTailLength().
Original r317100 message:
"Correct dwarf unwind information in function epilogue for X86"
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Changed CFI instructions so that they:
- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal
Added CFIInstrInserter pass:
- analyzes each basic block to determine cfa offset and register valid at
its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
llvm-svn: 317579
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Changed CFI instructions so that they:
- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal
Added CFIInstrInserter pass:
- analyzes each basic block to determine cfa offset and register valid at
its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D35844
llvm-svn: 317100
Tail merging can convert an undef use into a normal one when creating a
common tail. Doing so can make the register live out from a block which
previously contained the undef use. To keep the liveness up-to-date,
insert IMPLICIT_DEFs in such blocks when necessary.
To enable this patch the computeLiveIns() function which used to
compute live-ins for a block and set them immediately is split into new
functions:
- computeLiveIns() just computes the live-ins in a LivePhysRegs set.
- addLiveIns() applies the live-ins to a block live-in list.
- computeAndAddLiveIns() is a convenience function combining the other
two functions and behaving like computeLiveIns() before this patch.
Based on a patch by Krzysztof Parzyszek <kparzysz@codeaurora.org>
Differential Revision: https://reviews.llvm.org/D37034
llvm-svn: 312668
The conditional tail call logic did the wrong thing when both
destinations of a conditional branch were the same:
BB#1: derived from LLVM BB %entry
Live Ins: %EFLAGS
Predecessors according to CFG: BB#0
JE_1 <BB#5>, %EFLAGS<imp-use,kill>
JMP_1 <BB#5>
BB#5: derived from LLVM BB %sw.epilog
Predecessors according to CFG: BB#1
TCRETURNdi64 <ga:@mergeable_conditional_tailcall>, 0, ...
We would fold the JE_1 to a TCRETURNdi64cc, and then remove our BB#5
successor. Then BB#5 would be deleted as it had no predecessors, leaving
a dangling "JMP_1 <BB#5>" reference behind to cause assertions later.
This patch checks that both conditional branch destinations are
different before doing the transform. The standard branch folding logic
is able to remove both the JMP_1 and the JE_1, and for my test case we
end up forming a better conditional tail call later.
Fixes PR33980
llvm-svn: 309422
CFI instructions that set appropriate cfa offset and cfa register are now
inserted in emitEpilogue() in X86FrameLowering.
Majority of the changes in this patch:
1. Ensure that CFI instructions do not affect code generation.
2. Enable maintaining correct information about cfa offset and cfa register
in a function when basic blocks are reordered, merged, split, duplicated.
These changes are target independent and described below.
Changed CFI instructions so that they:
1. are duplicable
2. are not counted as instructions when tail duplicating or tail merging
3. can be compared as equal
Add information to each MachineBasicBlock about cfa offset and cfa register
that are valid at its entry and exit (incoming and outgoing CFI info). Add
support for updating this information when basic blocks are merged, split,
duplicated, created. Add a verification pass (CFIInfoVerifier) that checks
that outgoing cfa offset and register of predecessor blocks match incoming
values of their successors.
Incoming and outgoing CFI information is used by a late pass
(CFIInstrInserter) that corrects CFA calculation rule for a basic block if
needed. That means that additional CFI instructions get inserted at basic
block beginning to correct the rule for calculating CFA. Having CFI
instructions in function epilogue can cause incorrect CFA calculation rule
for some basic blocks. This can happen if, due to basic block reordering,
or the existence of multiple epilogue blocks, some of the blocks have wrong
cfa offset and register values set by the epilogue block above them.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D18046
llvm-svn: 306529
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Re-commit r303937 + r303949 as they were not the cause for the build
failures.
We do not track liveness of reserved registers so adding them to the
liveins list in computeLiveIns() was completely unnecessary.
llvm-svn: 303970
Rename the DEBUG_TYPE to match the names of corresponding passes where
it makes sense. Also establish the pattern of simply referencing
DEBUG_TYPE instead of repeating the passname where possible.
llvm-svn: 303921
Hoisting common code can cause registers that live-in in the successor
blocks to no longer be live-in. The live-in information needs to be
updated to reflect this, or otherwise incorrect code can be generated
later on.
Differential Revision: https://reviews.llvm.org/D32661
llvm-svn: 302228
Merging identical blocks when it doesn't reduce fallthrough. It is common for
the blocks created from critical edge splitting to be identical. We would like
to merge these blocks whenever doing so would not reduce fallthrough.
llvm-svn: 299890
Summary: D25742 improved the precision of debug locations for PGO by removing debug locations from common tail when tail-merging. However, if identical insturctions that are merged into a common tail have the same debug locations, there's no need to remove them. This patch creates a merged debug location of identical instructions across SameTails and assign it to the instruction in the common tail, so that the debug locations are maintained if they are same across identical instructions.
Reviewers: aprantl, probinson, MatzeB, rob.lougher
Reviewed By: aprantl
Subscribers: andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D30226
llvm-svn: 297805
Summary:
Currently, BranchFolder drops DebugLoc for branch instructions in some places. For example, for the test code attached, the branch instruction of 'entry' block has a DILocation of
```
!12 = !DILocation(line: 6, column: 3, scope: !11)
```
, but this information is gone when then block is lowered because BranchFolder misses it. This patch is a fix for this issue.
Reviewers: qcolombet, aprantl, craig.topper, MatzeB
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29902
llvm-svn: 295684
This reverts r294348, which removed support for conditional tail calls
due to the PR above. It fixes the PR by marking live registers as
implicitly used and defined by the now predicated tailcall. This is
similar to how IfConversion predicates instructions.
Differential Revision: https://reviews.llvm.org/D29856
llvm-svn: 295262
Summary:
Blocks ending in unreachable are typically cold because they end the
program or throw an exception, so merging them with other identical
blocks is usually profitable because it reduces the size of cold code.
MachineBlockPlacement generally does not arrange to fall through to such
blocks, so commoning these blocks will not introduce additional
unconditional branches.
Reviewers: hans, iteratee, haicheng
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29153
llvm-svn: 295105
They are currently modelled incorrectly (as calls, which clobber
registers, confusing e.g. Machine Copy Propagation).
Reverting until we figure out the proper solution.
llvm-svn: 294348
When choosing the best successor for a block, ordinarily we would have preferred
a block that preserves the CFG unless there is a strong probability the other
direction. For small blocks that can be duplicated we now skip that requirement
as well, subject to some simple frequency calculations.
Differential Revision: https://reviews.llvm.org/D28583
llvm-svn: 293716
Summary:
This commits moves skipDebugInstructionsForward and
skipDebugInstructionsBackward from lib/CodeGen/IfConversion.cpp
to include/llvm/CodeGen/MachineBasicBlock.h and updates
some codgen files to use them.
This refactoring was suggested in https://reviews.llvm.org/D27688
and I thought it's best to do the refactoring in a separate
review, but I could also put both changes in a single review
if that's preferred.
Also, the names for the functions aren't the snappiest and
I would be happy to rename them if anybody has suggestions.
Reviewers: eli.friedman, iteratee, aprantl, MatzeB
Subscribers: MatzeB, llvm-commits
Differential Revision: https://reviews.llvm.org/D27782
llvm-svn: 289933
This reapplies revision 285093. Original commit message:
The branch folding pass tail merges blocks into a common-tail. However, the
tail retains the debug information from one of the original inputs to the
merge (chosen randomly). This is a problem for sampled-based PGO, as hits
on the common-tail will be attributed to whichever block was chosen,
irrespective of which path was actually taken to the common-tail.
This patch fixes the issue by nulling the debug location for the common-tail.
Differential Revision: https://reviews.llvm.org/D25742
llvm-svn: 285212