As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
This patch adds a basic loop fusion pass. It will fuse loops that conform to the
following 4 conditions:
1. Adjacent (no code between them)
2. Control flow equivalent (if one loop executes, the other loop executes)
3. Identical bounds (both loops iterate the same number of iterations)
4. No negative distance dependencies between the loop bodies.
The pass does not make any changes to the IR to create opportunities for fusion.
Instead, it checks if the necessary conditions are met and if so it fuses two
loops together.
The pass has not been added to the pass pipeline yet, and thus is not enabled by
default. It can be run stand alone using the -loop-fusion option.
Phabricator: https://reviews.llvm.org/D55851
llvm-svn: 358543
Summary:
Enable some of the existing size optimizations for cold code under PGO.
A ~5% code size saving in big internal app under PGO.
The way it gets BFI/PSI is discussed in the RFC thread
http://lists.llvm.org/pipermail/llvm-dev/2019-March/130894.html
Note it doesn't currently touch loop passes.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: mgorny, javed.absar, smeenai, mehdi_amini, eraman, zzheng, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59514
llvm-svn: 358422
Straightforward port of StatepointIRVerifier pass to new Pass Manager framework.
Fix By: skatkov
Reviewed By: fedor.sergeev
Differential Revision: https://reviews.llvm.org/D59825
This is a re-land of r357147/r357148 with LLVM_ENABLE_MODULES build fixed.
Adding IR/SafepointIRVerifier.h into its own module.
llvm-svn: 357361
to unbreak the modular bots and its follow-up commit.
This reverts commit https://reviews.llvm.org/D59825
because it introduced a
fatal error: cyclic dependency in module 'LLVM_intrinsic_gen': LLVM_intrinsic_gen -> LLVM_IR -> LLVM_intrinsic_gen
llvm-svn: 357201
LTO provides additional opportunities for tailcall elimination due to
link-time inlining and visibility of nocapture attribute. Testing showed
negligible impact on compilation times.
Differential Revision: https://reviews.llvm.org/D58391
llvm-svn: 356511
The basic idea of the pass is to use a circular buffer to log the execution ordering of the functions. We only log the function when it is first executed. We use a 8-byte hash to log the function symbol name.
In this pass, we add three global variables:
(1) an order file buffer: a circular buffer at its own llvm section.
(2) a bitmap for each module: one byte for each function to say if the function is already executed.
(3) a global index to the order file buffer.
At the function prologue, if the function has not been executed (by checking the bitmap), log the function hash, then atomically increase the index.
Differential Revision: https://reviews.llvm.org/D57463
llvm-svn: 355133
Current PGO profile counts are not context sensitive. The branch probabilities
for the inlined functions are kept the same for all call-sites, and they might
be very different from the actual branch probabilities. These suboptimal
profiles can greatly affect some downstream optimizations, in particular for
the machine basic block placement optimization.
In this patch, we propose to have a post-inline PGO instrumentation/use pass,
which we called Context Sensitive PGO (CSPGO). For the users who want the best
possible performance, they can perform a second round of PGO instrument/use on
the top of the regular PGO. They will have two sets of profile counts. The
first pass profile will be manly for inline, indirect-call promotion, and
CGSCC simplification pass optimizations. The second pass profile is for
post-inline optimizations and code-gen optimizations.
A typical usage:
// Regular PGO instrumentation and generate pass1 profile.
> clang -O2 -fprofile-generate source.c -o gen
> ./gen
> llvm-profdata merge default.*profraw -o pass1.profdata
// CSPGO instrumentation.
> clang -O2 -fprofile-use=pass1.profdata -fcs-profile-generate -o gen2
> ./gen2
// Merge two sets of profiles
> llvm-profdata merge default.*profraw pass1.profdata -o profile.profdata
// Use the combined profile. Pass manager will invoke two PGO use passes.
> clang -O2 -fprofile-use=profile.profdata -o use
This change touches many components in the compiler. The reviewed patch
(D54175) will committed in phrases.
Differential Revision: https://reviews.llvm.org/D54175
llvm-svn: 354930
With or without PGO data applied, splitting early in the pipeline
(either before the inliner or shortly after it) regresses performance
across SPEC variants. The cause appears to be that splitting hides
context for subsequent optimizations.
Schedule splitting late again, in effect reversing r352080, which
scheduled the splitting pass early for code size benefits (documented in
https://reviews.llvm.org/D57082).
Differential Revision: https://reviews.llvm.org/D58258
llvm-svn: 354158
This is the second attempt to port ASan to new PM after D52739. This takes the
initialization requried by ASan from the Module by moving it into a separate
class with it's own analysis that the new PM ASan can use.
Changes:
- Split AddressSanitizer into 2 passes: 1 for the instrumentation on the
function, and 1 for the pass itself which creates an instance of the first
during it's run. The same is done for AddressSanitizerModule.
- Add new PM AddressSanitizer and AddressSanitizerModule.
- Add legacy and new PM analyses for reading data needed to initialize ASan with.
- Removed DominatorTree dependency from ASan since it was unused.
- Move GlobalsMetadata and ShadowMapping out of anonymous namespace since the
new PM analysis holds these 2 classes and will need to expose them.
Differential Revision: https://reviews.llvm.org/D56470
llvm-svn: 353985
Summary:
Follow up to D57082 which moved splitting earlier in the pipeline, in
order to perform it before inlining. However, it was moved too early,
before the IR is annotated with instrumented PGO data. This caused the
splitting to incorrectly determine cold functions.
Move it to just after PGO annotation (still before inlining), in both
pass managers.
Reviewers: vsk, hiraditya, sebpop
Subscribers: mehdi_amini, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57805
llvm-svn: 353270
Summary:
Follow on to D54819/r351476.
We also don't need to perform extra InstCombine pass when we aren't
loading the sample profile in the ThinLTO backend because we have a
flattened sample profile.
Additionally, for consistency and clarity, when we aren't reloading the
sample profile, perform ICP in the same location as non-sample PGO
backends. To this end I have moved the ICP invocation for non-SamplePGO
ThinLTO down into buildModuleSimplificationPipeline (partly addresses
the FIXME where we were previously setting this up).
Reviewers: wmi
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57705
llvm-svn: 353135
Introduces a pass that provides default lowering strategy for the
`experimental.widenable.condition` intrinsic, replacing all its uses with
`i1 true`.
Differential Revision: https://reviews.llvm.org/D56096
Reviewed By: reames
llvm-svn: 352739
Performing splitting early has several advantages:
- Inhibiting inlining of cold code early improves code size. Compared
to scheduling splitting at the end of the pipeline, this cuts code
size growth in half within the iOS shared cache (0.69% to 0.34%).
- Inhibiting inlining of cold code improves compile time. There's no
need to inline split cold functions, or to inline as much *within*
those split functions as they are marked `minsize`.
- During LTO, extra work is only done in the pre-link step. Less code
must be inlined during cross-module inlining.
An additional motivation here is that the most common cold regions
identified by the static/conservative splitting heuristic can (a) be
found before inlining and (b) do not grow after inlining. E.g.
__assert_fail, os_log_error.
The disadvantages are:
- Some opportunities for splitting out cold code may be missed. This
gap can potentially be narrowed by adding a worklist algorithm to the
splitting pass.
- Some opportunities to reduce code size may be lost (e.g. store
sinking, when one side of the CFG diamond is split). This does not
outweigh the code size benefits of splitting earlier.
On net, splitting early in the pipeline has substantial code size
benefits, and no major effects on memory locality or performance. We
measured memory locality using ktrace data, and consistently found that
10% fewer pages were needed to capture 95% of text page faults in key
iOS benchmarks. We measured performance on frequency-stabilized iOS
devices using LNT+externals.
This reverses course on the decision made to schedule splitting late in
r344869 (D53437).
Differential Revision: https://reviews.llvm.org/D57082
llvm-svn: 352080
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
If the sample profile has no inlining hierachy information included, we call
the sample profile is flattened. For flattened profile, in ThinLTO postlink
phase, SampleProfileLoader's hot function inlining and profile annotation will
do nothing, so it is better to save the effort to read in the profile and run
the sample profile loader pass. It is helpful for reducing compile time when
the flattened profile is huge.
Differential Revision: https://reviews.llvm.org/D54819
llvm-svn: 351476
Summary:
Second iteration of D56433 which got reverted in rL350719. The problem
in the previous version was that we dropped the thunk calling the tsan init
function. The new version keeps the thunk which should appease dyld, but is not
actually OK wrt. the current semantics of function passes. Hence, add a
helper to insert the functions only on the first time. The helper
allows hooking into the insertion to be able to append them to the
global ctors list.
Reviewers: chandlerc, vitalybuka, fedor.sergeev, leonardchan
Subscribers: hiraditya, bollu, llvm-commits
Differential Revision: https://reviews.llvm.org/D56538
llvm-svn: 351314
Allow to specify loop-unrolling with optional parameters explicitly
spelled out in -passes pipeline specification.
Introducing somewhat generic way of specifying parameters parsing via
FUNCTION_PASS_PARAMETRIZED pass registration.
Syntax of parametrized unroll pass name is as follows:
'unroll<' parameter-list '>'
Where parameter-list is ';'-separate list of parameter names and optlevel
optlevel: 'O[0-3]'
parameter: { 'partial' | 'peeling' | 'runtime' | 'upperbound' }
negated: 'no-' parameter
Example:
-passes=loop(unroll<O3;runtime;no-upperbound>)
this invokes LoopUnrollPass configured with OptLevel=3,
Runtime, no UpperBound, everything else by default.
llvm-svn: 350808
A straightforward port of tsan to the new PM, following the same path
as D55647.
Differential Revision: https://reviews.llvm.org/D56433
llvm-svn: 350647
At -O0, globalopt is not run during the compile step, and we can have a
chain of an alias having an immediate aliasee of another alias. The
summaries are constructed assuming aliases in a canonical form
(flattened chains), and as a result only the base object but no
intermediate aliases were preserved.
Fix by adding a pass that canonicalize aliases, which ensures each
alias is a direct alias of the base object.
Reviewers: pcc, davidxl
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D54507
llvm-svn: 350423
Summary:
Keeping msan a function pass requires replacing the module level initialization:
That means, don't define a ctor function which calls __msan_init, instead just
declare the init function at the first access, and add that to the global ctors
list.
Changes:
- Pull the actual sanitizer and the wrapper pass apart.
- Add a newpm msan pass. The function pass inserts calls to runtime
library functions, for which it inserts declarations as necessary.
- Update tests.
Caveats:
- There is one test that I dropped, because it specifically tested the
definition of the ctor.
Reviewers: chandlerc, fedor.sergeev, leonardchan, vitalybuka
Subscribers: sdardis, nemanjai, javed.absar, hiraditya, kbarton, bollu, atanasyan, jsji
Differential Revision: https://reviews.llvm.org/D55647
llvm-svn: 350305
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.
#pragma clang loop unroll_and_jam(enable)
#pragma clang loop distribute(enable)
is the same as
#pragma clang loop distribute(enable)
#pragma clang loop unroll_and_jam(enable)
and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.
This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,
!0 = !{!0, !1, !2}
!1 = !{!"llvm.loop.unroll_and_jam.enable"}
!2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
!3 = !{!"llvm.loop.distribute.enable"}
defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.
Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.
For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.
Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.
To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.
With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).
Reviewed By: hfinkel, dmgreen
Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288
llvm-svn: 348944
This patch introduces a new instinsic `@llvm.experimental.widenable_condition`
that allows explicit representation for guards. It is an alternative to using
`@llvm.experimental.guard` intrinsic that does not contain implicit control flow.
We keep finding places where `@llvm.experimental.guard` is not supported or
treated too conservatively, and there are 2 reasons to that:
- `@llvm.experimental.guard` has memory write side effect to model implicit control flow,
and this sometimes confuses passes and analyzes that work with memory;
- Not all passes and analysis are aware of the semantics of guards. These passes treat them
as regular throwing call and have no idea that the condition of guard may be used to prove
something. One well-known place which had caused us troubles in the past is explicit loop
iteration count calculation in SCEV. Another example is new loop unswitching which is not
aware of guards. Whenever a new pass appears, we potentially have this problem there.
Rather than go and fix all these places (and commit to keep track of them and add support
in future), it seems more reasonable to leverage the existing optimizer's logic as much as possible.
The only significant difference between guards and regular explicit branches is that guard's condition
can be widened. It means that a guard contains (explicitly or implicitly) a `deopt` block successor,
and it is always legal to go there no matter what the guard condition is. The other successor is
a guarded block, and it is only legal to go there if the condition is true.
This patch introduces a new explicit form of guards alternative to `@llvm.experimental.guard`
intrinsic. Now a widenable guard can be represented in the CFG explicitly like this:
%widenable_condition = call i1 @llvm.experimental.widenable.condition()
%new_condition = and i1 %cond, %widenable_condition
br i1 %new_condition, label %guarded, label %deopt
guarded:
; Guarded instructions
deopt:
call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
The new intrinsic `@llvm.experimental.widenable.condition` has semantics of an
`undef`, but the intrinsic prevents the optimizer from folding it early. This form
should exploit all optimization boons provided to `br` instuction, and it still can be
widened by replacing the result of `@llvm.experimental.widenable.condition()`
with `and` with any arbitrary boolean value (as long as the branch that is taken when
it is `false` has a deopt and has no side-effects).
For more motivation, please check llvm-dev discussion "[llvm-dev] Giving up using
implicit control flow in guards".
This patch introduces this new intrinsic with respective LangRef changes and a pass
that converts old-style guards (expressed as intrinsics) into the new form.
The naming discussion is still ungoing. Merging this to unblock further items. We can
later change the name of this intrinsic.
Reviewed By: reames, fedor.sergeev, sanjoy
Differential Revision: https://reviews.llvm.org/D51207
llvm-svn: 348593
Summary:
It turns out that we need an OptimizerLast PassBuilder extension point
after all. I missed the relevance of this EP the first time. By legacy PM magic,
function passes added at this EP get added to the last _Function_ PM, which is a
feature we lost when dropping this EP for the new PM.
A key difference between this and the legacy PassManager's OptimizerLast
callback is that this extension point is not triggered at O0. Extensions
to the O0 pipeline should append their passes to the end of the overall
pipeline.
Differential Revision: https://reviews.llvm.org/D54374
llvm-svn: 346645
Unlike its legacy counterpart new pass manager's LoopUnrollPass does
not provide any means to select which flavors of unroll to run
(runtime, peeling, partial), relying on global defaults.
In some cases having ability to run a restricted LoopUnroll that
does more than LoopFullUnroll is needed.
Introduced LoopUnrollOptions to select optional unroll behaviors.
Added 'unroll<peeling>' to PassRegistry mainly for the sake of testing.
Reviewers: chandlerc, tejohnson
Differential Revision: https://reviews.llvm.org/D53440
llvm-svn: 345723
This reverts commit 8d6af840396f2da2e4ed6aab669214ae25443204 and commit
b78d19c287b6e4a9abc9fb0545de9a3106d38d3d which causes slower build times
by initializing the AddressSanitizer on every function run.
The corresponding revisions are https://reviews.llvm.org/D52814 and
https://reviews.llvm.org/D52739.
llvm-svn: 345433
Summary:
Fix the new PM to only perform hot cold splitting once during ThinLTO,
by skipping it in the pre-link phase.
This was already fixed in the old PM by the move of the hot cold split
pass later (after the early return when PrepareForThinLTO) by r344869.
Reviewers: vsk, sebpop, hiraditya
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D53611
llvm-svn: 345096
Summary:
In the new+old pass manager, hot cold splitting was schedule too early.
Thanks to Vedant for pointing this out.
Reviewers: sebpop, vsk
Reviewed By: sebpop, vsk
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D53437
llvm-svn: 344869
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344685
Summary:
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344519
This patch ports the legacy pass manager to the new one to take advantage of
the benefits of the new PM. This involved moving a lot of the declarations for
`AddressSantizer` to a header so that it can be publicly used via
PassRegistry.def which I believe contains all the passes managed by the new PM.
This patch essentially decouples the instrumentation from the legacy PM such
hat it can be used by both legacy and new PM infrastructure.
Differential Revision: https://reviews.llvm.org/D52739
llvm-svn: 344274
This can be used to preserve profiling information across codebase
changes that have widespread impact on mangled names, but across which
most profiling data should still be usable. For example, when switching
from libstdc++ to libc++, or from the old libstdc++ ABI to the new ABI,
or even from a 32-bit to a 64-bit build.
The user can provide a remapping file specifying parts of mangled names
that should be treated as equivalent (eg, std::__1 should be treated as
equivalent to std::__cxx11), and profile data will be treated as
applying to a particular function if its name is equivalent to the name
of a function in the profile data under the provided equivalences. See
the documentation change for a description of how this is configured.
Remapping is supported for both sample-based profiling and instruction
profiling. We do not support remapping indirect branch target
information, but all other profile data should be remapped
appropriately.
Support is only added for the new pass manager. If someone wants to also
add support for this for the old pass manager, doing so should be
straightforward.
This is the LLVM side of Clang r344199.
Reviewers: davidxl, tejohnson, dlj, erik.pilkington
Subscribers: mehdi_amini, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51249
llvm-svn: 344200
Modified the testcases to use both pass managers
Use single commandline flag for both pass managers.
Differential Revision: https://reviews.llvm.org/D52708
Reviewers: sebpop, tejohnson, brzycki, SirishP
Reviewed By: tejohnson, brzycki
llvm-svn: 343662
This reverts commit r342387 as it's showing significant performance
regressions in a number of benchmarks. Followed up with the
committer and original thread with an example and will get performance
numbers before recommitting.
llvm-svn: 343522
Rebase rL341954 since https://bugs.llvm.org/show_bug.cgi?id=38912
has been fixed by rL342055.
Precommit testing performed:
* Overnight runs of csmith comparing the output between programs
compiled with gvn-hoist enabled/disabled.
* Bootstrap builds of clang with UbSan/ASan configurations.
llvm-svn: 342387
This reverts rL341954.
The builder `sanitizer-x86_64-linux-bootstrap-ubsan` has been
failing with timeouts at stage2 clang/ubsan:
[3065/3073] Linking CXX executable bin/lld
command timed out: 1200 seconds without output running python
../sanitizer_buildbot/sanitizers/buildbot_selector.py,
attempting to kill
llvm-svn: 342001
Summary:
Control height reduction merges conditional blocks of code and reduces the
number of conditional branches in the hot path based on profiles.
if (hot_cond1) { // Likely true.
do_stg_hot1();
}
if (hot_cond2) { // Likely true.
do_stg_hot2();
}
->
if (hot_cond1 && hot_cond2) { // Hot path.
do_stg_hot1();
do_stg_hot2();
} else { // Cold path.
if (hot_cond1) {
do_stg_hot1();
}
if (hot_cond2) {
do_stg_hot2();
}
}
This speeds up some internal benchmarks up to ~30%.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: xbolva00, dmgreen, mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D50591
llvm-svn: 341386
Rebase rL338240 since the excessive memory usage observed when using
GVNHoist with UBSan has been fixed by rL340818.
Differential Revision: https://reviews.llvm.org/D49858
llvm-svn: 340922
Summary:
Enable these passes for CFI and WPD in ThinLTO and LTO with the new pass
manager. Add a couple of tests for both PMs based on the clang tests
tools/clang/test/CodeGen/thinlto-distributed-cfi*.ll, but just test
through llvm-lto2 and not with distributed ThinLTO.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49429
llvm-svn: 337461
This is a simple implementation of the unroll-and-jam classical loop
optimisation.
The basic idea is that we take an outer loop of the form:
for i..
ForeBlocks(i)
for j..
SubLoopBlocks(i, j)
AftBlocks(i)
Instead of doing normal inner or outer unrolling, we unroll as follows:
for i... i+=2
ForeBlocks(i)
ForeBlocks(i+1)
for j..
SubLoopBlocks(i, j)
SubLoopBlocks(i+1, j)
AftBlocks(i)
AftBlocks(i+1)
Remainder Loop
So we have unrolled the outer loop, then jammed the two inner loops into
one. This can lead to a simpler inner loop if memory accesses can be shared
between the now jammed loops.
To do this we have to prove that this is all safe, both for the memory
accesses (using dependence analysis) and that ForeBlocks(i+1) can move before
AftBlocks(i) and SubLoopBlocks(i, j).
Differential Revision: https://reviews.llvm.org/D41953
llvm-svn: 336062
and diretory.
Also cleans up all the associated naming to be consistent and removes
the public access to the pass ID which was unused in LLVM.
Also runs clang-format over parts that changed, which generally cleans
up a bunch of formatting.
This is in preparation for doing some internal cleanups to the pass.
Differential Revision: https://reviews.llvm.org/D47352
llvm-svn: 336028
This pass is being added in order to make the information available to BasicAA,
which can't do caching of this information itself, but possibly this information
may be useful for other passes.
Incorporates code based on Daniel Berlin's implementation of Tarjan's algorithm.
Differential Revision: https://reviews.llvm.org/D47893
llvm-svn: 335857
=== Generating the CG Profile ===
The CGProfile module pass simply gets the block profile count for each BB and scans for call instructions. For each call instruction it adds an edge from the current function to the called function with the current BB block profile count as the weight.
After scanning all the functions, it generates an appending module flag containing the data. The format looks like:
```
!llvm.module.flags = !{!0}
!0 = !{i32 5, !"CG Profile", !1}
!1 = !{!2, !3, !4} ; List of edges
!2 = !{void ()* @a, void ()* @b, i64 32} ; Edge from a to b with a weight of 32
!3 = !{void (i1)* @freq, void ()* @a, i64 11}
!4 = !{void (i1)* @freq, void ()* @b, i64 20}
```
Differential Revision: https://reviews.llvm.org/D48105
llvm-svn: 335794
loop-cleanup passes at the beginning of the loop pass pipeline, and
re-enqueue loops after even trivial unswitching.
This will allow us to much more consistently avoid simplifying code
while doing trivial unswitching. I've also added a test case that
specifically shows effective iteration using this technique.
I've unconditionally updated the new PM as that is always using the
SimpleLoopUnswitch pass, and I've made the pipeline changes for the old
PM conditional on using this new unswitch pass. I added a bunch of
comments to the loop pass pipeline in the old PM to make it more clear
what is going on when reviewing.
Hopefully this will unblock doing *partial* unswitching instead of just
full unswitching.
Differential Revision: https://reviews.llvm.org/D47408
llvm-svn: 333493
This is a simple implementation of the unroll-and-jam classical loop
optimisation.
The basic idea is that we take an outer loop of the form:
for i..
ForeBlocks(i)
for j..
SubLoopBlocks(i, j)
AftBlocks(i)
Instead of doing normal inner or outer unrolling, we unroll as follows:
for i... i+=2
ForeBlocks(i)
ForeBlocks(i+1)
for j..
SubLoopBlocks(i, j)
SubLoopBlocks(i+1, j)
AftBlocks(i)
AftBlocks(i+1)
Remainder
So we have unrolled the outer loop, then jammed the two inner loops into
one. This can lead to a simpler inner loop if memory accesses can be shared
between the now-jammed loops.
To do this we have to prove that this is all safe, both for the memory
accesses (using dependence analysis) and that ForeBlocks(i+1) can move before
AftBlocks(i) and SubLoopBlocks(i, j).
Differential Revision: https://reviews.llvm.org/D41953
llvm-svn: 333358
The plan had always been to move towards using this rather than so much
in-pass simplification within the loop pipeline, but we never got around
to it.... until only a couple months after it was removed due to disuse.
=/
This commit is just a pure revert of the removal. I will add tests and
do some basic cleanup in follow-up commits. Then I'll wire it into the
loop pass pipeline.
Differential Revision: https://reviews.llvm.org/D47353
llvm-svn: 333250
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
There are two nontrivial details here:
* Loop structure update interface is quite different with new pass manager,
so the code to add new loops was factored out
* BranchProbabilityInfo is not a loop analysis, so it can not be just getResult'ed from
within the loop pass. It cant even be queried through getCachedResult as LoopCanonicalization
sequence (e.g. LoopSimplify) might invalidate BPI results.
Complete solution for BPI will likely take some time to discuss and figure out,
so for now this was partially solved by making BPI optional in IRCE
(skipping a couple of profitability checks if it is absent).
Most of the IRCE tests got their corresponding new-pass-manager variant enabled.
Only two of them depend on BPI, both marked with TODO, to be turned on when BPI
starts being available for loop passes.
Reviewers: chandlerc, mkazantsev, sanjoy, asbirlea
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D43795
llvm-svn: 327619
LoopInstSimplify is unused and untested. Reading through the commit
history the pass also seems to have a high maintenance burden.
It would be best to retire the pass for now. It should be easy to
recover if we need something similar in the future.
Differential Revision: https://reviews.llvm.org/D44053
llvm-svn: 327329
Combine expression patterns to form expressions with fewer, simple instructions.
This pass does not modify the CFG.
For example, this pass reduce width of expressions post-dominated by TruncInst
into smaller width when applicable.
It differs from instcombine pass in that it contains pattern optimization that
requires higher complexity than the O(1), thus, it should run fewer times than
instcombine pass.
Differential Revision: https://reviews.llvm.org/D38313
llvm-svn: 323321
This applies to most pipelines except the LTO and ThinLTO backend
actions - it is for use at the beginning of the overall pipeline.
This extension point will be used to add the GCOV pass when enabled in
Clang.
llvm-svn: 323166
Summary:
This pass synthesizes function entry counts by traversing the callgraph
and using the relative block frequencies of the callsites. The intended
use of these counts is in inlining to determine hot/cold callsites in
the absence of profile information.
The pass is split into two files with the code that propagates the
counts in a callgraph in a Utils file. I plan to add support for
propagation in the thinlto link phase and the propagation code will be
shared and hence this split. I did not add support to the old PM since
hot callsite determination in inlining is not possible in old PM
(although we could use hot callee heuristic with synthetic counts in the
old PM it is not worth the effort tuning it)
Reviewers: davidxl, silvas
Subscribers: mgorny, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D41604
llvm-svn: 322110
Summary:
New pass manager driver passes DebugPM (-debug-pass-manager) flag into
individual PassManager constructors in order to enable debug logging.
FunctionToLoopPassAdaptor has its own internal LoopCanonicalizationPM
which never gets its debug logging enabled and that means canonicalization
passes like LoopSimplify are never present in -debug-pass-manager output.
Extending FunctionToLoopPassAdaptor's constructor and
createFunctionToLoopPassAdaptor wrapper with an optional
boolean DebugLogging argument.
Passing debug-logging flags there as appropriate.
Reviewers: chandlerc, davide
Reviewed By: davide
Subscribers: mehdi_amini, eraman, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D41586
llvm-svn: 321548
Summary:
The port is nearly straightforward.
The only complication is related to the analyses handling,
since one of the analyses used in this module pass is domtree,
which is a function analysis. That requires asking for the results
of each function and disallows a single interface for run-on-module
pass action.
Decided to copy-paste the main body of this pass.
Most of its code is requesting analyses anyway, so not that much
of a copy-paste.
The rest of the code movement is to transform all the implementation
helper functions like stripNonValidData into non-member statics.
Extended all the related LLVM tests with new-pass-manager use.
No failures.
Reviewers: sanjoy, anna, reames
Reviewed By: anna
Subscribers: skatkov, llvm-commits
Differential Revision: https://reviews.llvm.org/D41162
llvm-svn: 320796
This should solve:
https://bugs.llvm.org/show_bug.cgi?id=34603
...by preventing SimplifyCFG from altering redundant instructions before early-cse has a chance to run.
It changes the default (canonical-forming) behavior of SimplifyCFG, so we're only doing the
sinking transform later in the optimization pipeline.
Differential Revision: https://reviews.llvm.org/D38566
llvm-svn: 320749
The core idea is to (re-)introduce some redundancies where their cost is
hidden by the cost of materializing immediates for constant operands of
PHI nodes. When the cost of the redundancies is covered by this,
avoiding materializing the immediate has numerous benefits:
1) Less register pressure
2) Potential for further folding / combining
3) Potential for more efficient instructions due to immediate operand
As a motivating example, consider the remarkably different cost on x86
of a SHL instruction with an immediate operand versus a register
operand.
This pattern turns up surprisingly frequently, but is somewhat rarely
obvious as a significant performance problem.
The pass is entirely target independent, but it does rely on the target
cost model in TTI to decide when to speculate things around the PHI
node. I've included x86-focused tests, but any target that sets up its
immediate cost model should benefit from this pass.
There is probably more that can be done in this space, but the pass
as-is is enough to get some important performance on our internal
benchmarks, and should be generally performance neutral, but help with
more extensive benchmarking is always welcome.
One awkward part is that this pass has to be scheduled after
*everything* that can eliminate these kinds of redundancies. This
includes SimplifyCFG, GVN, etc. I'm open to suggestions about better
places to put this. We could in theory make it part of the codegen pass
pipeline, but there doesn't really seem to be a good reason for that --
it isn't "lowering" in any sense and only relies on pretty standard cost
model based TTI queries, so it seems to fit well with the "optimization"
pipeline model. Still, further thoughts on the pipeline position are
welcome.
I've also only implemented this in the new pass manager. If folks are
very interested, I can try to add it to the old PM as well, but I didn't
really see much point (my use case is already switched over to the new
PM).
I've tested this pretty heavily without issue. A wide range of
benchmarks internally show no change outside the noise, and I don't see
any significant changes in SPEC either. However, the size class
computation in tcmalloc is substantially improved by this, which turns
into a 2% to 4% win on the hottest path through tcmalloc for us, so
there are definitely important cases where this is going to make
a substantial difference.
Differential revision: https://reviews.llvm.org/D37467
llvm-svn: 319164
This is a recommit of r316869 which was speculatively reverted with r317444 and
subsequently shown to not be the cause of PR35210. That crash should be fixed
after r318237.
Original commit message:
The old PM sets the options of what used to be known as "latesimplifycfg" on the
instantiation after the vectorizers have run, so that's what we'redoing here.
FWIW, there's a later SimplifyCFGPass instantiation in both PMs where we do not
set the "late" options. I'm not sure if that's intentional or not.
Differential Revision: https://reviews.llvm.org/D39407
llvm-svn: 318299
Clang implements the -finstrument-functions flag inherited from GCC, which
inserts calls to __cyg_profile_func_{enter,exit} on function entry and exit.
This is useful for getting a trace of how the functions in a program are
executed. Normally, the calls remain even if a function is inlined into another
function, but it is useful to be able to turn this off for users who are
interested in a lower-level trace, i.e. one that reflects what functions are
called post-inlining. (We use this to generate link order files for Chromium.)
LLVM already has a pass for inserting similar instrumentation calls to
mcount(), which it does after inlining. This patch renames and extends that
pass to handle calls both to mcount and the cygprofile functions, before and/or
after inlining as controlled by function attributes.
Differential Revision: https://reviews.llvm.org/D39287
llvm-svn: 318195
Registers it and everything, updates all the references, etc.
Next patch will add support to Clang's `-fexperimental-new-pass-manager`
path to actually enable BoundsChecking correctly.
Differential Revision: https://reviews.llvm.org/D39084
llvm-svn: 318128
This recommit r317351 after fixing a buildbot failure.
Original commit message:
Summary:
This change add a pass which tries to split a call-site to pass
more constrained arguments if its argument is predicated in the control flow
so that we can expose better context to the later passes (e.g, inliner, jump
threading, or IPA-CP based function cloning, etc.).
As of now we support two cases :
1) If a call site is dominated by an OR condition and if any of its arguments
are predicated on this OR condition, try to split the condition with more
constrained arguments. For example, in the code below, we try to split the
call site since we can predicate the argument (ptr) based on the OR condition.
Split from :
if (!ptr || c)
callee(ptr);
to :
if (!ptr)
callee(null ptr) // set the known constant value
else if (c)
callee(nonnull ptr) // set non-null attribute in the argument
2) We can also split a call-site based on constant incoming values of a PHI
For example,
from :
BB0:
%c = icmp eq i32 %i1, %i2
br i1 %c, label %BB2, label %BB1
BB1:
br label %BB2
BB2:
%p = phi i32 [ 0, %BB0 ], [ 1, %BB1 ]
call void @bar(i32 %p)
to
BB0:
%c = icmp eq i32 %i1, %i2
br i1 %c, label %BB2-split0, label %BB1
BB1:
br label %BB2-split1
BB2-split0:
call void @bar(i32 0)
br label %BB2
BB2-split1:
call void @bar(i32 1)
br label %BB2
BB2:
%p = phi i32 [ 0, %BB2-split0 ], [ 1, %BB2-split1 ]
llvm-svn: 317362
Summary:
This change add a pass which tries to split a call-site to pass
more constrained arguments if its argument is predicated in the control flow
so that we can expose better context to the later passes (e.g, inliner, jump
threading, or IPA-CP based function cloning, etc.).
As of now we support two cases :
1) If a call site is dominated by an OR condition and if any of its arguments
are predicated on this OR condition, try to split the condition with more
constrained arguments. For example, in the code below, we try to split the
call site since we can predicate the argument (ptr) based on the OR condition.
Split from :
if (!ptr || c)
callee(ptr);
to :
if (!ptr)
callee(null ptr) // set the known constant value
else if (c)
callee(nonnull ptr) // set non-null attribute in the argument
2) We can also split a call-site based on constant incoming values of a PHI
For example,
from :
BB0:
%c = icmp eq i32 %i1, %i2
br i1 %c, label %BB2, label %BB1
BB1:
br label %BB2
BB2:
%p = phi i32 [ 0, %BB0 ], [ 1, %BB1 ]
call void @bar(i32 %p)
to
BB0:
%c = icmp eq i32 %i1, %i2
br i1 %c, label %BB2-split0, label %BB1
BB1:
br label %BB2-split1
BB2-split0:
call void @bar(i32 0)
br label %BB2
BB2-split1:
call void @bar(i32 1)
br label %BB2
BB2:
%p = phi i32 [ 0, %BB2-split0 ], [ 1, %BB2-split1 ]
Reviewers: davidxl, huntergr, chandlerc, mcrosier, eraman, davide
Reviewed By: davidxl
Subscribers: sdesmalen, ashutosh.nema, fhahn, mssimpso, aemerson, mgorny, mehdi_amini, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D39137
llvm-svn: 317351
The old PM sets the options of what used to be known as "latesimplifycfg" on the
instantiation after the vectorizers have run, so that's what we'redoing here.
FWIW, there's a later SimplifyCFGPass instantiation in both PMs where we do not
set the "late" options. I'm not sure if that's intentional or not.
Differential Revision: https://reviews.llvm.org/D39407
llvm-svn: 316869
This patch adds a new pass for attaching !callees metadata to indirect call
sites. The pass propagates values to call sites by performing an IPSCCP-like
analysis using the generic sparse propagation solver. For indirect call sites
having a small set of possible callees, the attached metadata indicates what
those callees are. The metadata can be used to facilitate optimizations like
intersecting the function attributes of the possible callees, refining the call
graph, performing indirect call promotion, etc.
Differential Revision: https://reviews.llvm.org/D37355
llvm-svn: 316576
This pass adds pgo-memop-opt pass to the new pass manager.
It is in the old pass manager but somehow left out in the new pass manager.
Differential Revision: http://reviews.llvm.org/D39145
llvm-svn: 316384
This is the same exact change we did for the current pass manager
in rL314997, but the new pass manager pipeline already happened
to run GlobalOpt after the inliner, so we just insert a run of
GDCE here.
llvm-svn: 315003
Summary: In SamplePGO ThinLTO compile phase, we will not invoke ICP as it may introduce confusion to the 2nd annotation. This patch extracted that logic and makes it clearer before profile annotation. In the mean time, we need to make function importing process both inlined callsites as well as not promoted indirect callsites.
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: sanjoy, mehdi_amini, llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D38094
llvm-svn: 314619
This is intended to be a superset of the functionality from D31037 (EarlyCSE) but implemented
as an independent pass, so there's no stretching of scope and feature creep for an existing pass.
I also proposed a weaker version of this for SimplifyCFG in D30910. And I initially had almost
this same functionality as an addition to CGP in the motivating example of PR31028:
https://bugs.llvm.org/show_bug.cgi?id=31028
The advantage of positioning this ahead of SimplifyCFG in the pass pipeline is that it can allow
more flattening. But it needs to be after passes (InstCombine) that could sink a div/rem and
undo the hoisting that is done here.
Decomposing remainder may allow removing some code from the backend (PPC and possibly others).
Differential Revision: https://reviews.llvm.org/D37121
llvm-svn: 312862