This patch adds ObjectFilePCHContainerOperations uses the LLVM backend
to put the contents of a PCH into a __clangast section inside a COFF, ELF,
or Mach-O object file container.
This is done to facilitate module debugging by makeing it possible to
store the debug info for the types defined by a module alongside the AST.
rdar://problem/20091852
llvm-svn: 241620
We use findModuleForHeader() in several places, but in header search we
were not calling it when a framework module didn't show up with the
expected name, which would then lead to unexpected non-modular includes.
Now we will find the module unconditionally for frameworks. For regular
frameworks, we use the spelling of the module name from the module map
file, and for inferred ones we use the canonical directory name.
In the future we might want to lock down framework modules sufficiently
that these name mismatches cannot happen.
rdar://problem/20465870
llvm-svn: 241258
update the identifier in case we've imported a definition of the macro (and
thus the contents of the header) from a module.
Also fold ExternalIdentifierLookup into ExternalPreprocessorSource; it no longer
makes sense to keep these separate now that the only user of the former also
needs the latter.
llvm-svn: 241137
local submodule visibility enabled; that top-level file might not actually be
the module includes buffer if use of prebuilt modules is disabled.
llvm-svn: 241120
This allows a module-aware debugger such as LLDB to import the currently
visible modules before dropping into the expression evaluator.
rdar://problem/20965932
llvm-svn: 241084
Several tests wouldn't pass when executed on an armv7a_pc_linux triple
due to the non-default arm_aapcs calling convention produced on the
function definitions in the IR output. Account for this with the
application of a little regex.
Patch by Ying Yi.
llvm-svn: 240971
Any extra features from -fmodule-feature are part of the module hash and
need to get validated on load. Also print them with -module-file-info.
llvm-svn: 240433
It seems "*.pcm" would be expanded with current directory by NTOS 6.x's msvcrt. GnuWin32 utils are affected.
To avoid the issue, put an expression that msvcrt's glob won't match, like "*.pc[m]".
llvm-svn: 240387
Such conflicts are an accident waiting to happen, and this feature conflicts
with the desire to include existing headers into multiple modules and merge the
results. (In an ideal world, it should not be possible to export internal
linkage symbols from a module, but sadly the glibc and libstdc++ headers
provide 'static inline' functions in a few cases.)
llvm-svn: 240335
Previously we'd complain about redefinition of default arguments when we
instantiated a class with a friend template that inherits its default argument,
because we propagate the default template arguemnt onto the friend when we
reload the AST.
llvm-svn: 239857
We used to have a flag to enable module maps, and two more flags to enable
implicit module maps. This is all redundant; we don't need any flag for
enabling module maps in the abstract, and we don't usually have -fno- flags for
-cc1. We now have just a single flag, -fimplicit-module-maps, that enables
implicitly searching the file system for module map files and loading them.
The driver interface is unchanged for now. We should probably rename
-fmodule-maps to -fimplicit-module-maps at some point.
llvm-svn: 239789
There are still problems here, but this is a better starting point.
The main part of the change is: when doing a lookup that would accept visible
or hidden declarations, prefer to produce the latest visible declaration if
there are any visible declarations, rather than always producing the latest
declaration.
Thus, when we inherit default arguments (and other properties) from a previous
declaration, we inherit them from the previous visible declaration; if the
previous declaration is hidden, we already suppress inheritance of default
arguments.
There are a couple of other changes here that fix latent bugs exposed by this
change.
llvm-svn: 239371
visibility is enabled) or leave and re-enter it, restore the macro and module
visibility state from last time we were in that submodule.
This allows mutually-#including header files to stand a chance at being
modularized with local visibility enabled.
llvm-svn: 237871
glibc's headers use __need_* macros to selectively export parts of themselves
to each other. This requires us to enter those files repeatedly when building
a glibc module.
This can be unreverted once we have a better mechanism to deal with that
non-modular aspect of glibc (possibly some way to mark a header as "textual if
this macro is defined").
llvm-svn: 237718
enter it more than once, even if it doesn't have #include guards -- we already
know that it is intended to have the same effect every time it's included, and
it's already had that effect. This particularly helps with local submodule
visibility builds, where the include guard macro may not be visible in the
includer, but will become visible the moment we enter the included file.
llvm-svn: 237609
With this change, enabling -fmodules-local-submodule-visibility results in name
visibility rules being applied to submodules of the current module in addition
to imported modules (that is, names no longer "leak" between submodules of the
same top-level module). This also makes it much safer to textually include a
non-modular library into a module: each submodule that textually includes that
library will get its own "copy" of that library, and so the library becomes
visible no matter which including submodule you import.
llvm-svn: 237473
This flag specifies that the normal visibility rules should be used even for
local submodules (submodules of the currently-being-built module). Thus names
will only be visible if a header / module that declares them has actually been
included / imported, and not merely because a submodule that happened to be
built earlier declared those names. This also removes the need to modularize
bottom-up: textually-included headers will be included into every submodule
that includes them, since their include guards will not leak between modules.
So far, this only governs visibility of macros, not of declarations, so is not
ready for real use yet.
llvm-svn: 236350
Modules builds fundamentally have a non-linear macro history. In the interest
of better source fidelity, represent the macro definition information
faithfully: we have a linear macro directive history within each module, and at
any point we have a unique "latest" local macro directive and a collection of
visible imported directives. This also removes the attendent complexity of
attempting to create a correct MacroDirective history (which we got wrong
in the general case).
No functionality change intended.
llvm-svn: 236176
if the merged definition is visible, and perform lookups into all merged copies
of the definition (not just for special members) so that we can complete the
redecl chains for members of the class.
llvm-svn: 233420
constructors in the current lexical context even though name lookup
found them via some other context merged into the redecl chain.
This can only happen for implicit constructors which can only have the
name of the type of the current context, so we can fix this by simply
*always* merging those names first. This also has the advantage of
removing the walk of the current lexical context from the common case
when this is the only constructor name we need to deal with (implicit or
otherwise).
I've enhanced the tests to cover this case (and uncovered an unrelated
bug which I fixed in r233325).
llvm-svn: 233327
Clang was inserting these into a dense map. While it never iterated the
dense map during normal compilation, it did when emitting a module. Fix
this by using a standard MapVector to preserve the order in which we
encounter the late parsed templates.
I suspect this still isn't ideal, as we don't seem to remove things from
this map even when we mark the templates as no longer late parsed. But
I don't know enough about this particular extension to craft a nice,
subtle test case covering this. I've managed to get the stress test to
at least do some late parsing and demonstrate the core problem here.
This patch fixes the test and provides deterministic behavior which is
a strict improvement over the prior state.
I've cleaned up some of the code here as well to be explicit about
inserting when that is what is actually going on.
llvm-svn: 233264
templates. Turns out all of this works correctly (so far). But it should
cover more code paths and will let me test some things that don't
actually work next.
llvm-svn: 233263
deterministically.
This fixes a latent issue where even Clang's Sema (and diagnostics) were
non-deterministic in the face of this pragma. The fix is super simple --
just use a MapVector so we track the order in which these are parsed (or
imported). Especially considering how rare they are, this seems like the
perfect tradeoff. I've also simplified the client code with judicious
use of auto and range based for loops.
I've added some pretty hilarious code to my stress test which now
survives the binary diff without issue.
llvm-svn: 233261
updated decl contexts get emitted.
Since this code was added, we have newer vastly simpler code for
handling this. The code I'm removing was very expensive and also
generated unstable order of declarations which made module outputs
non-deterministic.
All of the tests continue to pass for me and I'm able to check the
difference between the .pcm files after merging modules together.
llvm-svn: 233251
non-visible definition, skip the new definition and make the old one visible
instead of trying to parse it again and failing horribly. C++'s ODR allows
us to assume that the two definitions are identical.
llvm-svn: 233250
decl context lookup tables.
The first attepmt at this caused problems. We had significantly more
sources of non-determinism that I realized at first, and my change
essentially turned them from non-deterministic output into
use-after-free. Except that they weren't necessarily caught by tools
because the data wasn't really freed.
The new approach is much simpler. The first big simplification is to
inline the "visit" code and handle this directly. That works much
better, and I'll try to go and clean up the other caller of the visit
logic similarly.
The second key to the entire approach is that we need to *only* collect
names into a stable order at first. We then need to issue all of the
actual 'lookup()' calls in the stable order of the names so that we load
external results in a stable order. Once we have loaded all the results,
the table of results will stop being invalidated and we can walk all of
the names again and use the cheap 'noload_lookup()' method to quickly
get the results and serialize them.
To handle constructors and conversion functions (whose names can't be
stably ordered) in this approach, what we do is record only the visible
constructor and conversion function names at first. Then, if we have
any, we walk the decls of the class and add those names in the order
they occur in the AST. The rest falls out naturally.
This actually ends up simpler than the previous approach and seems much
more robust.
It uncovered a latent issue where we were building on-disk hash tables
for lookup results when the context was a linkage spec! This happened to
dodge all of the assert by some miracle. Instead, add a proper predicate
to the DeclContext class and use that which tests both for function
contexts and linkage specs.
It also uncovered PR23030 where we are forming somewhat bizarre negative
lookup results. I've just worked around this with a FIXME in place
because fixing this particular Clang bug seems quite hard.
I've flipped the first part of the test case I added for stability back
on in this commit. I'm taking it gradually to try and make sure the
build bots are happy this time.
llvm-svn: 233249
This fixes my stress tests non-determinism so far. However, I've not
started playing with templates, friends, or terrible macros. I've found
at least two more seeming instabilities and am just waiting for a test
case to actually trigger them.
llvm-svn: 233162
prune it when we have disabled implicit module generation and thus are
not using any cached modules.
Also update a test of explicitly generated modules to pass this CC1 flag
correctly.
This fixes an issue where Clang was dropping files into the source tree
while running its tests.
llvm-svn: 233117
There are two aspects of non-determinism fixed here, which was the
minimum required to cause at least an empty module to be deterministic.
First, the random number signature is only inserted into the module when
we are building modules implicitly. The use case for these random
signatures is to work around the very fact that modules are not
deterministic in their output when working with the implicitly built and
populated module cache. Eventually this should go away entirely when
we're confident that Clang is producing deterministic output.
Second, the on-disk hash table is populated based on the order of
iteration over a DenseMap. Instead, use a MapVector so that we can walk
it in insertion order.
I've added a test that an empty module, when built twice, produces the
same binary PCM file.
llvm-svn: 233115
for a DeclContext, and fix propagation of exception specifications along
redeclaration chains.
This reverts r232905, r232907, and r232907, which reverted r232793, r232853,
and r232853.
One additional change is present here to resolve issues with LLDB: distinguish
between whether lexical decls missing from the lookup table are local or are
provided by the external AST source, and still look in the external source if
that's where they came from.
llvm-svn: 232928
give an exception specification to a declaration that didn't have an exception
specification in any of our imported modules, emit an update record ourselves.
Without this, code importing the current module would not see an exception
specification that we could see and might have relied on.
llvm-svn: 232870
When we need to build the lookup table for a DeclContext, we used to pull in
all lexical declarations for the context; instead, just build a lookup table
for the local lexical declarations. We previously didn't guarantee that the
imported declarations would be in the returned map, but in some cases we'd
happen to put them all in there regardless. Now we're even lazier about this.
This unnecessary work was papering over some other bugs:
- LookupVisibleDecls would use the DC for name lookups in the TU in C, and
this was not guaranteed to find all imported names (generally, the DC for
the TU in C is not a reliable place to perform lookups). We now use an
identifier-based lookup mechanism for this.
- We didn't actually load in the list of eagerly-deserialized declarations
when importing a module (so external definitions in a module wouldn't be
emitted by users of those modules unless they happened to be deserialized
by the user of the module).
llvm-svn: 232793
consumers of that module.
Previously, such a file would only be available if the module happened to
actually import something from that module.
llvm-svn: 232583
namespace to not merge properly.
We have an invariant here: after a declaration reads its canonical declaration,
it can assume the canonical declaration is fully merged. This invariant can be
violated if deserializing some declaration triggers the deserialization of a
later declaration, because that later declaration can in turn deserialize a
redeclaration of that first declaration before it is fully merged.
The anonymous namespace for a namespace gets stored with the first declaration
of that namespace, which may be before its parent namespace, so defer loading
it until after we've finished merging the surrounding namespace.
llvm-svn: 232455
building its redecl chains, make sure we pull in the redeclarations of those
canonical declarations.
It's pretty difficult to reach a situation where we can find more canonical
declarations of an entity while building its redecl chains; I think the
provided testcase (4 modules and 7 declarations) cannot be reduced further.
llvm-svn: 232411
with a subset of the existing target CPU features or mismatched CPU
names.
While we can't check that the CPU name used to build the module will end
up being able to codegen correctly for the translation unit, we actually
check that the imported features are a subset of the existing features.
While here, rewrite the code to use std::set_difference and have it
diagnose all of the differences found.
Test case added which walks the set relationships and ensures we
diagnose all the right cases and accept the others.
No functional change for implicit modules here, just better diagnostics.
llvm-svn: 232248
headers even if they arrived when merging non-system modules.
The idea of this code is that we don't want to warn the user about
macros defined multiple times by their system headers with slightly
different definitions. We should have this behavior if either the
macro comes from a system module, or the definition within the module
comes from a system header. Previously, we would warn on ambiguous
macros being merged when they came from a users modules even though they
only showed up via system headers.
By surviving this we can handle common system header macro differences
like differing 'const' qualification of pointers due to some headers
predating 'const' being valid in C code, even when those systems headers
are pre-built into a system module.
Differential Revision: http://reviews.llvm.org/D8310
llvm-svn: 232149
definition, be sure to update the definition data on all declarations, not just
the canonical one, since the pattern might not be in the list of pending
definitions (if it used to be canonical itself).
One-line fix by me; reduced testcase by Daniel Jasper!
llvm-svn: 231950
specification, update all prior declarations if the new one has an explicit
exception specification and the prior ones don't.
Patch by Vassil Vassilev! Some minor tweaking and test case by me.
llvm-svn: 231738
move the operator delete updating into a separate update record so we can cope
with updating another module's destructor's operator delete.
llvm-svn: 231735
check that private headers are in a list matching the role. (We can't perform
the opposite checks for non-private headers because we infer those.)
llvm-svn: 231728