I definitely didn't run the tests before committing :(
Most of these tests failed because the LLD map file output changed,
moving the functions from the main text section to a new per-function
section.
ICF also started to fire in a few cases, leading to new layouts.
llvm-svn: 327571
This reverts commit 147f45ff24456aea59575fa4ac16c8fa554df46a.
Revert "Revert "Revert "Revert "Replace trivial use of external rc.exe by writing our own .res file.""""
This reverts commit 61a90a67ed54a1f0dfeab457b65abffa129569e4.
The patches were intially reverted because they were causing a failure
on CrWinClangLLD. Unfortunately, this was done haphazardly and didn't
compile, so the revert was reverted again quickly to fix this. One that
was done, the revert of the revert was itself reverted. This allowed me
to finally fix the actual bug in r307452. This patch re-enables the
code path that had originally been causing the bug, now that it (should)
be fixed.
llvm-svn: 307460
This reverts commit ae21ee0b6cacbc1efaf4d42502e71da2f0eb45c3.
The initial revert was done in order to prevent ongoing errors on
chromium bots such as CrWinClangLLD. However, this was done haphazardly
and I didn't realize there were test and compilation failures, so this
revert was reverted. Now that those have been fixed, we can revert the
revert of the revert.
llvm-svn: 307227
This reverts commit 600d52c278e123dd08bee24c1f00932b55add8de.
This patch still seems to break CrWinClangLLD, reverting until I can
find root problem.
llvm-svn: 307189
Summary:
This reverts commit 51931072a7c9a52540baf76fc30ef391d2529a2f.
This revert was originally done because the integrations of the new
WindowsResource library into LLD was causing error in chromium, due to
bugs in how resource sections were handled. These bugs were fixed,
meaning that the features may be reintegrated.
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D34922
llvm-svn: 306941
This reverts commit d4c7e9fc63c10dbab0c30186ef8575474a704496.
This is done in order to address the failure of CrWinClangLLD etc. bots.
These throw an error of "side-by-side configuration is incorrect" during
compilation, which sounds suspiciously related to these manifest
changes.
Revert "Switch external cvtres.exe for llvm's own resource library."
This reverts commit 71fe8ef283a9dab9a3f21432c98466cbc23990d1.
llvm-svn: 306618
In this patch, I flip the switch in DriverUtils from using the external
cvtres.exe tool to using the Windows Resource library in llvm.
I also fixed a bug where .rsrc sections were marked as discardable
memory and therefore were placed in the wrong order in the final PE.
Furthermore, I modified WindowsResource to write the coff directly to a
memory buffer instead of to file, also had it use the machine types
already declared in COFF.h instead creating my own enum.
Finally, I flipped the switch to allow all unit tests that had
previously run only on windows due to a winres dependency to run
cross-platform.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34265
llvm-svn: 305592
The rules for dllexported symbols are overly complicated due to
x86 name decoration, fuzzy symbol resolution, and the fact that
one symbol can be resolved by so many different names. The rules
are probably intended to be "intuitive", so that users don't have
to understand the name mangling schemes, but it seems that it can
lead to unintended symbol exports.
To make it clear what I'm trying to do with this patch, let me
write how the export rules are subtle and complicated.
- x86 name decoration: If machine type is i386 and export name
is given by a command line option, like /export:foo, the
real symbol name the linker has to search for is _foo because
all symbols are decorated with "_" prefixes. This doesn't happen
on non-x86 machines. This automatic name decoration happens only
when the name is not C++ mangled.
However, the symbol name exported from DLLs are ones without "_"
on all platforms.
Moreover, if the option is given via .drectve section, no
symbol decoration is done (the reason being that the .drectve
section is created by a compiler and the compiler should always
know the exact name of the symbol, I guess).
- Fuzzy symbol resolution: In addition to x86 name decoration,
the linker has to look for cdecl or C++ mangled symbols
for a given /export. For example, it searches for not only
_foo but also _foo@<number> or ??foo@... for /export:foo.
Previous implementation didn't get it right. I'm trying to make
it as compatible with MSVC linker as possible with this patch
however the rules are. The new code looks a bit messy to me, but
I don't think it can be simpler due to the ad-hoc-ness of the rules.
llvm-svn: 246424
If a symbol is exported as /export:foo, and foo is resolved as a
mangled name (_foo@<number> or ?foo@@Y...), that mangled name should
be written to the export table. Previously, we wrote the original
name to the export table.
llvm-svn: 242342
The previous logic to find default entry name or subsystem does not
seem correct (i.e. was not compatible with MSVC linker). Previously,
default entry name was inferred from CRT functions and user-defined
entry functions. Subsystem was inferred from CRT functions.
Default entry name and subsystem are now inferred based on the
following table. Note that we no longer use CRT functions to infer
them.
Entry name Subsystem
main mainCRTStartup console
wmain wmainCRTStartup console
WinMain WinMainCRTStartup windows
wWinMain wWinMainCRTStartup windows
llvm-svn: 240922
Usually dllexported symbols are defined with 'extern "C"',
so identifying them is easy. We can just do hash table lookup
to look up exported symbols.
However, C++ non-member functions are also allowed to be exported,
and they can be specified with unmangled name. So, if /export:foo
is given, we need to look up not only "foo" but also its all
mangled names. In MSVC mangling scheme, that means that we need to
look up any symbol which starts with "?foo@@Y".
In this patch, we scan the entire symbol table to search for
a mangled symbol. The symbol table is a DenseMap, and that doesn't
support table lookup by string prefix. This is of course very
inefficient. But that should be probably OK because the user
should always add 'extern "C"' to dllexported symbols.
llvm-svn: 240919
On Windows, we have to create a .lib file for each .dll.
When linking against DLLs, the linker doesn't use the DLL files,
but instead read a list of dllexported symbols from corresponding
lib files.
A library file containing descriptors of a DLL is called an
import library file.
lib.exe has a feature to create an import library file from a
module-definition file. In this patch, we create a module-definition
file and pass that to lib.exe.
We eventually want to create an import library file by ourselves
to eliminate dependency to lib.exe. For now, we just use the MSVC
tool.
llvm-svn: 239937