in the context in which it was originally found, the
expression parser now goes hunting for it in all modules
(in the appropriate namespace, if applicable). This means
that forward-declared types that exist in another shared
library will now be resolved correctly.
Added a test case to cover this. The test case also tests
"frame variable," which does not have this functionality
yet.
llvm-svn: 146204
pointer to make the result of an expression. LLDB now
dumps the ivars of the Objective-C object and all of
its parents. This just required fixing a bug where we
didn't distinguish between Objective-C object pointers
and regular C-style pointers.
Also added a testcase to verify that this continues to
work.
llvm-svn: 146164
for use in the benchmark against lldb's disassembly speed. Note that the lldb
executable path can already be specified using the LLDB_EXEC env variable.
rdar://problem/7511194
llvm-svn: 146050
ClangASTSource::~ClangASTSource() was calling
ClangASTContext *scratch_clang_ast_context = m_target->GetScratchClangASTContext();
which had the side effect of deleting this very ClangASTSource instance. Not good.
Change it to
// We are in the process of destruction, don't create clang ast context on demand
// by passing false to Target::GetScratchClangASTContext(create_on_demand).
ClangASTContext *scratch_clang_ast_context = m_target->GetScratchClangASTContext(false);
The Target::GetScratchClangASTContext(bool create_on_demand=true) has a new signature.
llvm-svn: 145537
to find Objective-C class types by looking in the
symbol tables for the individual object files.
I did this as follows:
- I added code to SymbolFileSymtab that vends
Clang types for symbols matching the pattern
"_OBJC_CLASS_$_NSMyClassName," making them
appear as Objective-C classes. This only occurs
in modules that do not have debug information,
since otherwise SymbolFileDWARF would be in
charge of looking up types.
- I made a new SymbolVendor subclass for the
Apple Objective-C runtime that is in charge of
making global lookups of Objective-C types. It
currently just sends out type lookup requests to
the appropriate SymbolFiles, but in the future we
will probably extend it to query the runtime more
completely.
I also modified a testcase whose behavior is changed
by the fact that we now actually return an Objective-C
type for __NSCFString.
llvm-svn: 145526
Fix wrong test logic in test_modules_search_paths(). Add additional exercising of 'target modules search-paths list/query".
There is a reproducible crash if 'target modules search-paths clear' is exercised during test teardown.
So we currently comment out the stmt as follows:
# Add teardown hook to clear image-search-paths after the test.
# rdar://problem/10501020
# Uncomment the following to reproduce 10501020.
#self.addTearDownHook(lambda: self.runCmd("target modules search-paths clear"))
llvm-svn: 145466
so that we can do Python scripting like this:
target = self.dbg.CreateTarget(self.exe)
self.dbg.SetAsync(True)
process = target.LaunchSimple(None, None, os.getcwd())
process.PutSTDIN("Line 1 Entered.\n")
process.PutSTDIN("Line 2 Entered.\n")
process.PutSTDIN("Line 3 Entered.\n")
Add TestProcessIO.py to exercise the process IO API: PutSTDIN()/GetSTDOUT()/GetSTDERR().
llvm-svn: 145282
Use this option with care as you would need to build the inferior(s) by hand
and build the executable(s) with the correct name(s). This option can be used
with '-# n' to stress test certain test cases for n number of times.
An example:
[11:55:11] johnny:/Volumes/data/lldb/svn/trunk/test/python_api/value $ ls
Makefile TestValueAPI.pyc linked_list
TestValueAPI.py change_values main.c
[11:55:14] johnny:/Volumes/data/lldb/svn/trunk/test/python_api/value $ make EXE=test_with_dsym
clang -gdwarf-2 -O0 -arch x86_64 -c -o main.o main.c
clang -gdwarf-2 -O0 -arch x86_64 main.o -o "test_with_dsym"
/usr/bin/dsymutil -o "test_with_dsym.dSYM" "test_with_dsym"
[11:55:20] johnny:/Volumes/data/lldb/svn/trunk/test/python_api/value $ cd ../..
[11:55:24] johnny:/Volumes/data/lldb/svn/trunk/test $ ./dotest.py -v -# 10 -S -f ValueAPITestCase.test_with_dsym
LLDB build dir: /Volumes/data/lldb/svn/trunk/build/Debug
LLDB-89
Path: /Volumes/data/lldb/svn/trunk
URL: https://johnny@llvm.org/svn/llvm-project/lldb/trunk
Repository Root: https://johnny@llvm.org/svn/llvm-project
Repository UUID: 91177308-0d34-0410-b5e6-96231b3b80d8
Revision: 144914
Node Kind: directory
Schedule: normal
Last Changed Author: gclayton
Last Changed Rev: 144911
Last Changed Date: 2011-11-17 09:22:31 -0800 (Thu, 17 Nov 2011)
Session logs for test failures/errors/unexpected successes will go into directory '2011-11-17-11_55_29'
Command invoked: python ./dotest.py -v -# 10 -S -f ValueAPITestCase.test_with_dsym
----------------------------------------------------------------------
Collected 1 test
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 1.163s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.200s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.198s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.199s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.239s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 1.215s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.105s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.098s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.195s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 1.197s
OK
[11:55:34] johnny:/Volumes/data/lldb/svn/trunk/test $
llvm-svn: 144919
of problems with Objective-C object completion. To go
along with the LLVM/Clang-side fixes, we have a variety
of Objective-C improvements.
Fixes include:
- It is now possible to run expressions when stopped in
an Objective-C class method and have "self" act just
like "self" would act in the class method itself (i.e.,
[self classMethod] works without casting the return
type if debug info is present). To accomplish this,
the expression masquerades as a class method added by
a category.
- Objective-C objects can now provide methods and
properties and methods to Clang on demand (i.e., the
ASTImporter sets hasExternalVisibleDecls on Objective-C
interface objects).
- Objective-C built-in types, which had long been a bone
of contention (should we be using "id"? "id*"?), are
now fetched correctly using accessor functions on
ClangASTContext. We inhibit searches for them in the
debug information.
There are also a variety of logging fixes, and I made two
changes to the test suite:
- Enabled a test case for Objective-C properties in the
current translation unit.
- Added a test case for calling Objective-C class methods
when stopped in a class method.
llvm-svn: 144607
This is the actual fix for the above radar where global variables that weren't
initialized were not being shown correctly when leaving the DWARF in the .o
files. Global variables that aren't intialized have symbols in the .o files
that specify they are undefined and external to the .o file, yet document the
size of the variable. This allows the compiler to emit a single copy, but makes
it harder for our DWARF in .o files with the executable having a debug map
because the symbol for the global in the .o file doesn't exist in a section
that we can assign a fixed up linked address to, and also the DWARF contains
an invalid address in the "DW_OP_addr" location (always zero). This means that
the DWARF is incorrect and actually maps all such global varaibles to the
first file address in the .o file which is usually the first function. So we
can fix this in either of two ways: make a new fake section in the .o file
so that we have a file address in the .o file that we can relink, or fix the
the variable as it is created in the .o file DWARF parser and actually give it
the file address from the executable. Each variable contains a
SymbolContextScope, or a single pointer that helps us to recreate where the
variables came from (which module, file, function, etc). This context helps
us to resolve any file addresses that might be in the location description of
the variable by pointing us to which file the file address comes from, so we
can just replace the SymbolContextScope and also fix up the location, which we
would have had to do for the other case as well, and update the file address.
Now globals display correctly.
The above changes made it possible to determine if a variable is a global
or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag
for each variable (local, global, or static), yet DWARF provides no way for
us to classify these variables into these categories. We can now detect when
a variable has a simple address expressions as its location and this will help
us classify these correctly.
While making the above changes I also noticed that we had two symbol types:
eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same
thing: the symbol is not defined in the current object file. Symbol objects
also have a bit that specifies if a symbol is externally visible, so I got
rid of the eSymbolTypeExtern symbol type and moved all code locations that
used it to use the eSymbolTypeUndefined type.
llvm-svn: 144489
be in the target. All of the environment, args, stdin/out/err files, etc have
all been moved. Also re-enabled the ability to launch a process in a separate
terminal on MacOSX.
llvm-svn: 144061
dated 2010-21-15. The test started failure recently probably due to work done on the command parsing.
Anyway, the specific test sequence is invalid and is fixed now.
llvm-svn: 144039
a) adds a new --synchronicity (-s) setting for "command script add" that allows the user to decide if scripted commands should run synchronously or asynchronously (which can make a difference in how events are handled)
b) clears up several error messages
c) adds a new --allow-reload (-r) setting for "command script import" that allows the user to reload a module even if it has already been imported before
d) allows filename completion for "command script import" (much like what happens for "target create")
e) prevents "command script add" from replacing built-in commands with scripted commands
f) changes AddUserCommand() to take an std::string instead of a const char* (for performance reasons)
plus, it fixes an issue in "type summary add" command handling which caused several test suite errors
llvm-svn: 144035
correctly, and added a testcase to check that it works.
The main problem here is that Objective-C class method
selectors are external references stored in a special
data structure in the LLVM IR module for an expression.
I just had to extract them and ensure that the real
class object locations were properly resolved.
llvm-svn: 143520
"object borked"... Also made the error when the checker fails reflect this fact rather than
report a crash at 0x0.
Also a little cleanup:
- StopInfoMachException had a redundant copy of the description string.
- ThreadPlanCallFunction had a redundant copy of the thread, and had a
copy of the process that it didn't really need.
llvm-svn: 143419
Example:
[11:33:09] johnny:/Volumes/data/lldb/svn/trunk/test $ ./dosep.ty -o "-v -n"
dotest.py options: -v -n
Running /Volumes/data/lldb/svn/trunk/test/dotest.py -v -n -p TestPublicAPIHeaders.py /Volumes/data/lldb/svn/trunk/test/api/check_public_api_headers
1: test_sb_api_directory (TestPublicAPIHeaders.SBDirCheckerCase)
Test the SB API directory and make sure there's no unwanted stuff. ... ok
----------------------------------------------------------------------
Ran 1 test in 4.404s
OK
Running /Volumes/data/lldb/svn/trunk/test/dotest.py -v -n -p TestEmulations.py /Volumes/data/lldb/svn/trunk/test/arm_emulation
1: test_arm_emulations (TestEmulations.ARMEmulationTestCase) ... ok
2: test_thumb_emulations (TestEmulations.ARMEmulationTestCase) ... ok
----------------------------------------------------------------------
Ran 2 tests in 1.399s
OK
...
llvm-svn: 143355
in the same hashed format as the ".apple_names", but they map objective C
class names to all of the methods and class functions. We need to do this
because in the DWARF the methods for Objective C are never contained in the
class definition, they are scattered about at the translation unit level and
they don't even have attributes that say the are contained within the class
itself.
Added 3 new formats which can be used to display data:
eFormatAddressInfo
eFormatHexFloat
eFormatInstruction
eFormatAddressInfo describes an address such as function+offset and file+line,
or symbol + offset, or constant data (c string, 2, 4, 8, or 16 byte constants).
The format character for this is "A", the long format is "address".
eFormatHexFloat will print out the hex float format that compilers tend to use.
The format character for this is "X", the long format is "hex float".
eFormatInstruction will print out disassembly with bytes and it will use the
current target's architecture. The format character for this is "i" (which
used to be being used for the integer format, but the integer format also has
"d", so we gave the "i" format to disassembly), the long format is
"instruction".
Mate the lldb::FormatterChoiceCriterion enumeration private as it should have
been from the start. It is very specialized and doesn't belong in the public
API.
llvm-svn: 143114
inferior program for the lldb debugger to operate on. The fixed lldb executable
corresponds to r142902.
Plus some minor modifications to the test benchmark to conform to way bench.py
is meant to be invoked.
llvm-svn: 143075
An example (with /Developer/usr/bin/lldb vs. /usr/bin/gdb):
[13:05:04] johnny:/Volumes/data/lldb/svn/trunk/test $ ./dotest.py -v +b -n -p TestCompileRunToBreakpointTurnaround.py
1: test_run_lldb_then_gdb (TestCompileRunToBreakpointTurnaround.CompileRunToBreakpointBench)
Benchmark turnaround time with lldb vs. gdb. ...
lldb turnaround benchmark: Avg: 4.574600 (Laps: 3, Total Elapsed Time: 13.723799)
gdb turnaround benchmark: Avg: 7.966713 (Laps: 3, Total Elapsed Time: 23.900139)
lldb_avg/gdb_avg: 0.574214
ok
----------------------------------------------------------------------
Ran 1 test in 55.462s
OK
llvm-svn: 142949
command in the '- Hook id' header. This should improve readbility of the 'display'
command if, for example, we have issued 'display a' and 'display b' which turn into
"target stop-hook add -o 'expr -- a'" and "target stop-hook add -o 'expr -- b'".
Plus some minor change in TestAbbreviations.py to conditionalize the platform-specific
checkings of the "image list" output.
llvm-svn: 142868
Example (start the lldb inferior, break at the Driver::MainLoop() function, and
issue 'frame variable'):
$ ./dotest.py -v +b -x '-F Driver::MainLoop()' -n -p TestFrameVariableResponse.py
----------------------------------------------------------------------
Collected 1 test
1: test_startup_delay (TestFrameVariableResponse.FrameVariableResponseBench)
Test response time for the 'frame variable' command. ...
lldb frame variable benchmark: Avg: 1.636897 (Laps: 20, Total Elapsed Time: 32.737944)
ok
----------------------------------------------------------------------
Ran 1 test in 65.105s
OK
llvm-svn: 142678
o create a fresh target; and
o set the first breakpoint
Example (using lldb to set a breakpoint on lldb's Driver::MainLoop function):
./dotest.py -v +b -x '-F Driver::MainLoop()' -p TestStartupDelays.py
...
1: test_startup_delay (TestStartupDelays.StartupDelaysBench)
Test start up delays creating a target and setting a breakpoint. ...
lldb startup delays benchmark:
create fresh target: Avg: 0.106732 (Laps: 15, Total Elapsed Time: 1.600985)
set first breakpoint: Avg: 0.102589 (Laps: 15, Total Elapsed Time: 1.538832)
ok
llvm-svn: 142628
Add a '-y count' option to the test driver for this purpose. An example:
$ ./dotest.py -v -y 25 +b -p TestDisassembly.py
...
----------------------------------------------------------------------
Collected 2 tests
1: test_run_gdb_then_lldb (TestDisassembly.DisassembleDriverMainLoop)
Test disassembly on a large function with lldb vs. gdb. ...
gdb benchmark: Avg: 0.226305 (Laps: 25, Total Elapsed Time: 5.657614)
lldb benchmark: Avg: 0.113864 (Laps: 25, Total Elapsed Time: 2.846606)
lldb_avg/gdb_avg: 0.503146
ok
2: test_run_lldb_then_gdb (TestDisassembly.DisassembleDriverMainLoop)
Test disassembly on a large function with lldb vs. gdb. ...
lldb benchmark: Avg: 0.113008 (Laps: 25, Total Elapsed Time: 2.825201)
gdb benchmark: Avg: 0.225240 (Laps: 25, Total Elapsed Time: 5.631001)
lldb_avg/gdb_avg: 0.501723
ok
----------------------------------------------------------------------
Ran 2 tests in 41.346s
OK
llvm-svn: 142598
bring the debugger to the desired state.
This patch makes BenchBase inherit from TestBase, instead of Base (which is a parent class of
TestBase). This is so that we can also enjoy the Pythonic way of bringing the lldb debugger
to a desired state before running the benchmark and collect statistics.
llvm-svn: 142562
child=None, child_prompt=None, use_cmd_api=False
By default, expect a pexpect spawned child and child prompt to be
supplied (use_cmd_api=False). If use_cmd_api is true, ignore the child
and child prompt and use self.runCmd() to run the hooks one by one.
Modify existing client to reflect the change.
llvm-svn: 142532
watchpoint modify -c 'global==5'
modifies the last created watchpoint so that the condition expression
is evaluated at the stop point to decide whether we should proceed with
the stopping.
Also add SBWatchpont::SetCondition(const char *condition) to set condition
programmatically.
Test cases to come later.
llvm-svn: 142227
a watchpoint for either the variable encapsulated by SBValue (Watch) or the pointee
encapsulated by SBValue (WatchPointee).
Removed SBFrame::WatchValue() and SBFrame::WatchLocation() API as a result of that.
Modified the watchpoint related test suite to reflect the change.
Plus replacing WatchpointLocation with Watchpoint throughout the code base.
There are still cleanups to be dome. This patch passes the whole test suite.
Check it in so that we aggressively catch regressions.
llvm-svn: 141925