The code in LLDB assumes that CompilerType and friends use the size 0
as a sentinel value to signal an error. This works for C++, where no
zero-sized type exists, but in many other programming languages
(including I believe C) types of size zero are possible and even
common. This is a particular pain point in swift-lldb, where extra
code exists to double-check that a type is *really* of size zero and
not an error at various locations.
To remedy this situation, this patch starts by converting
CompilerType::getBitSize() and getByteSize() to return an optional
result. To avoid wasting space, I hand-rolled my own optional data
type assuming that no type is larger than what fits into 63
bits. Follow-up patches would make similar changes to the ValueObject
hierarchy.
rdar://problem/47178964
Differential Revision: https://reviews.llvm.org/D56688
llvm-svn: 351214
This patch simplifies boolean expressions acorss LLDB. It was generated
using clang-tidy with the following command:
run-clang-tidy.py -checks='-*,readability-simplify-boolean-expr' -format -fix $PWD
Differential revision: https://reviews.llvm.org/D55584
llvm-svn: 349215
This patch processes the case of retrieving a virtual base when the object is
already read from the debuggee memory.
To achieve that ValueObject::GetCPPVTableAddress was removed and was
reimplemented in ClangASTContext (because access to the process is needed to
retrieve the VTable pointer in general, and because this is the only place that
used old version of ValueObject::GetCPPVTableAddress).
This patch allows to use real object's VTable instead of searching virtual bases
by offsets restored by MicrosoftRecordLayoutBuilder. PDB has no enough info to
restore VBase offsets properly, so we have to read real VTable instead.
Differential revision: https://reviews.llvm.org/D53506
llvm-svn: 346669
This patch removes the comments following the header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
Differential revision: https://reviews.llvm.org/D54385
llvm-svn: 346625
These three classes have no external dependencies, but they are used
from various low-level APIs. Moving them down to Utility improves
overall code layering (although it still does not break any particular
dependency completely).
The XCode project will need to be updated after this change.
Differential Revision: https://reviews.llvm.org/D49740
llvm-svn: 339127
Summary: This resolves unnecessary the header dependency from
Core to DataFormatters. Patch is necessary for the introduction of
C++ modules to the LLDB build system.
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D47409
llvm-svn: 333342
that takes a prefix string. This simplifies the implementation and
allows plugins such as the Swift plugin to supply different prefixes
for return and error variables.
rdar://problem/39299889
Differential Revision: https://reviews.llvm.org/D46088
llvm-svn: 331235
so it can be shared across multiple language plugins.
In a multi-language project it is counterintuitive to have a result
variables reuse numbers just because they are using a different
language plugin in LLDB (but not for example, when they are
Objective-C versus C++, since they are both handled by Clang).
This is NFC on llvm.org except for the Go plugin.
rdar://problem/39299889
Differential Revision: https://reviews.llvm.org/D46083
llvm-svn: 331234
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
ValueObject methods.
Using ArrayRef allows us to remove some overloads, work with more array-like
types, and avoid some std::vector temporaries.
https://reviews.llvm.org/D32518
llvm-svn: 301441
This adjusts header file includes for headers and source files
in Core. In doing so, one dependency cycle is eliminated
because all the includes from Core to that project were dead
includes anyway. In places where some files in other projects
were only compiling due to a transitive include from another
header, fixups have been made so that those files also include
the header they need. Tested on Windows and Linux, and plan
to address failures on OSX and FreeBSD after watching the
bots.
llvm-svn: 299714
Summary:
Calling ValueObject::SetName from a sythetic child provider would change
the underying value object used for the non-synthetic child as well what
is clearly unintentional.
Reviewers: jingham, labath
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D31371
llvm-svn: 299259
Summary:
After this change a sythetic child provider can generate a special child
named "$$dereference$$" what if present is used when "operator*" or
"operator->" used on a ValueObject. The goal of the change is to make
expressions like "up->foo" work inside the "frame variable" command.
Reviewers: labath, jingham
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D31368
llvm-svn: 299251
All references to Host and Core have been removed, so this
class can now safely be lowered into Utility.
Differential Revision: https://reviews.llvm.org/D30559
llvm-svn: 296909
With this patch, the only dependency left is from Utility
to Host. After this is broken, Utility will finally be
standalone.
Differential Revision: https://reviews.llvm.org/D29909
llvm-svn: 295088
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
This concludes the changes I originally tried to make and then
had to back out. This way if anything is still broken, it
should be easier to bisect it back to a more specific changeset.
llvm-svn: 287367
The scanning algorithm had a few little subtleties that I
overlooked, but this patch should fix everything.
I still haven't changed the function to take a StringRef since
that has some trickle down effect and is mostly mechanical,
I just wanted to get the tricky part as isolated as possible.
llvm-svn: 287354
This argument was only used in one place in the codebase, and
it was in a non-critical log statement and can be easily
substituted for an equally meaningful field instead. The
payoff of computing this value is not worth the added
complexity.
llvm-svn: 287315
Apparently these two enormous functions were dead. Which is
good, since one was largely a copy of another function with
only a few minor tweaks.
llvm-svn: 287308
Originally I converted this entire function and all dependents
to use StringRef, but there were some test failures that
were tricky to track down, as this is a complicated function.
So I'm starting over, this time in smaller increments.
llvm-svn: 287307
This is a large API change that removes the two functions from
StreamString that return a std::string& and a const std::string&,
and instead provide one function which returns a StringRef.
Direct access to the underlying buffer violates the concept of
a "stream" which is intended to provide forward only access,
and makes porting to llvm::raw_ostream more difficult in the
future.
Differential Revision: https://reviews.llvm.org/D26698
llvm-svn: 287152
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
"frame variable" and "target variable" are trying to emulate the expression parser when doing things like:
(lldb) frame variable &my_struct.my_bitfield
And since the expression parser doesn't allow this, we shouldn't allow "frame variable" or "target variable" to succeed.
<rdar://problem/27208607>
llvm-svn: 274703
Currently, the DataExtractor::GetMaxU64Bitfield and GetMaxS64Bitfield
routines assume the incoming "bitfield_bit_offset" parameter uses
little-endian bit numbering, i.e. a bitfield_bit_offset 0 refers to
a bitfield whose least-significant bit coincides with the least-
significant bit of the surrounding integer.
On many big-endian systems, however, the big-endian bit numbering
is used for bit fields. Here, a bitfield_bit_offset 0 refers to
a bitfield whose most-significant bit conincides with the most-
significant bit of the surrounding integer.
Now, in principle LLDB could arbitrarily choose which semantics of
bitfield_bit_offset to use. However, there are two problems with
the current approach:
- When parsing DWARF, LLDB decodes bit offsets in little-endian
bit numbering on LE systems, but in big-endian bit numbering
on BE systems. Passing those offsets later on into the
DataExtractor routines gives incorrect results on BE.
- In the interim, LLDB's type layer combines byte and bit offsets
into a single number. I.e. instead of recording bitfields by
specifying the byte offset and byte size of the surrounding
integer *plus* the bit offset of the bit field within that field,
it simply records a single bit offset number.
Now, note that converting from byte offset + bit offset to a
single offset value and back is well-defined if we either use
little-endian byte order *and* little-endian bit numbering,
or use big-endian byte order *and* big-endian bit numbering.
Any other combination will yield incorrect results.
Therefore, the simplest approach would seem to be to always use
the bit numbering that matches the system byte order. This makes
storing a single bit offset valid, and makes the existing DWARF
code correct. The only place to fix is to teach DataExtractor
to use big-endian bit numbering on big endian systems.
However, there is only additional caveat: we also get bit offsets
from LLDB synthetic bitfields. While the exact semantics of those
doesn't seem to be well-defined, from test cases it appears that
the intent was for the user-provided synthetic bitfield offset to
always use little-endian bit numbering. Therefore, on a big-endian
system we now have to convert those to big-endian bit numbering
to remain consistent.
Differential Revision: http://reviews.llvm.org/D18982
llvm-svn: 266312
When the parent of an expression is anonymous, skip adding '.' or '->' before the expression name.
Differential Revision: http://reviews.llvm.org/D18005
llvm-svn: 263166
This patch adds support for printing global static const variables which are given a DW_AT_const_value DWARF tag by clang.
Fix for bug https://llvm.org/bugs/show_bug.cgi?id=25653
Reviewers: clayborg, tberghammer
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D15576
llvm-svn: 255887
This latter determination may or may not be possible on a per-language basis; and neither is mandatory to implement for any language
Use this knowledge in the ValueObjectPrinter to generalize the notion of IsObjCNil() and the respective printout
llvm-svn: 252663
In this way, when a language needs to tell itself things that are not bound to a type but to a value (imagine a base-class relation, this is not about the type, but about the ValueObject), it can do so in a clean and general fashion
The interpretation of the values of the flags is, of course, up to the language that owns the value (the value object's runtime language, that is)
llvm-svn: 252503
Summary:
Along with this, support for an optional argument to the "num_children"
method of a Python synthetic child provider has also been added. These have
been added with the following use case in mind:
Synthetic child providers currently have a method "has_children" and
"num_children". While the former is good enough to know if there are
children, it does not give any insight into how many children there are.
Though the latter serves this purpose, calculating the number for children
of a data structure could be an O(N) operation if the data structure has N
children. The new method added in this change provide a middle ground.
One can call GetNumChildren(K) to know if a child exists at an index K
which can be as large as the callers tolerance can be. If the caller wants
to know about children beyond K, it can make an other call with 2K. If the
synthetic child provider maintains state about it counting till K
previosly, then the next call is only an O(K) operation. Infact, all
calls made progressively with steps of K will be O(K) operations.
Reviewers: vharron, clayborg, granata.enrico
Subscribers: labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D13778
llvm-svn: 250930
The ClangExpressionVariable::CreateVariableInList functions looked cute, but
caused more confusion than they solved. I removed them, and instead made sure
that there are adequate facilities for easily adding newly-constructed
ExpressionVariables to lists.
I also made some of the constructors that are common be generic, so that it's
possible to construct expression variables from generic places (like the ABI and
ValueObject) without having to know the specifics about the class.
llvm-svn: 249095
Also added some target-level search functions so that persistent variables and
symbols can be searched for without hand-iterating across the map of
TypeSystems.
llvm-svn: 249027
the corresponding TypeSystem. This makes sense because what kind of data there
is -- and how it can be looked up -- depends on the language.
Functionality that is common to all type systems is factored out into
PersistentExpressionState.
llvm-svn: 248934
There are still a bunch of dependencies on the plug-in, but this helps to
identify them.
There are also a few more bits we need to move (and abstract, for example the
ClangPersistentVariables).
llvm-svn: 248612
Summary:
With the recent changes to separate clang from the core structures
of LLDB, many inclusions of clang headers can be removed.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12954
llvm-svn: 248004
stores information about a variable that different parts of LLDB use, from the
compiler-specific portion that only the expression parser cares about.
http://reviews.llvm.org/D12602
llvm-svn: 246871
This is still something I need to fix, but at least it's not so ugly, and it's
consistent with the other code that does that so we will catch it when we purge
all such code.
llvm-svn: 246738
Clang-specific part, create the ExpressionVariable source/header file and
move ClangExpressionVariable into the Clang expression parser plugin.
It is expected that there are some ugly #include paths... these will be resolved
by either (1) making that code use generic expression variables (once they're
separated appropriately) or (2) moving that code into a plug-in, often
the expression parser plug-in.
llvm-svn: 246737
Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files.
Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types.
Bulk renames for things that used to return a ClangASTType which is now CompilerType:
"Type::GetClangFullType()" to "Type::GetFullCompilerType()"
"Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()"
"Type::GetClangForwardType()" to "Type::GetForwardCompilerType()"
"Value::GetClangType()" to "Value::GetCompilerType()"
"Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)"
"ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()"
many more renames that are similar.
llvm-svn: 245905
Eliminated ENABLE_128_BIT_SUPPORT and union ValueData from Scalar.cpp and use llvm::APInt and llvm::APFloat for all integer and floating point types. Also used Scalar in RegisterValue.cpp
Reviewers: tberghammer, ovyalov, clayborg, labath
Subscribers: lldb-commits, nitesh.jain, jaydeep
Differential: http://reviews.llvm.org/D12100
llvm-svn: 245547
Eliminated ENABLE_128_BIT_SUPPORT and union ValueData from Scalar.cpp and use llvm::APInt and llvm::APFloat for all integer and floating point types. Also used Scalar in RegisterValue.cpp
Reviewers: jaydeep, clayborg, jasonmolenda, ovyalov, emaste
Subscribers: tberghammer, ovyalov, emaste, mohit.bhakkad, nitesh.jain, bhushan
Differential: http://reviews.llvm.org/D10919
llvm-svn: 245216
This is more preparation for multiple different kinds of types from different compilers (clang, Pascal, Go, RenderScript, Swift, etc).
llvm-svn: 244689
This is the work done by Ryan Brown from http://reviews.llvm.org/D8712 that makes a TypeSystem class and abstracts types to be able to use a type system.
All tests pass on MacOSX and passed on linux the last time this was submitted.
llvm-svn: 244679
This change :
- Fixes offsets of all register sets for Mips.
- Adds MSA register set and FRE=1 mode support for FP register set.
- Separates lldb register numbers and register infos of freebsd/mips64 from linux/mips64.
- Re-orders the register numbers of all kinds for mips to be consistent with freebsd order of register numbers.
- Eliminates ENABLE_128_BIT_SUPPORT and union ValueData from Scalar.cpp and uses llvm::APInt and llvm::APFloat for all integer and floating point types.
Reviewers : emaste, jaydeep, clayborg
Subscribers : emaste, mohit.bhakkad, nitesh.jain, bhushan
Differential : http://reviews.llvm.org/D10919
llvm-svn: 244308
This was of course overridable by using DumpValueObjectOptions, but the default should be saner and the previous behavior made for a few fun investigations....
rdar://problem/21065149
llvm-svn: 238961
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
And they also do not have a thread/frame attached to them
That makes dynamic and synthetic values attached to them impossible to update - which, among other things, makes it impossible to properly display persistent variables of types that could have such dynamic/persistent values
Fix this by making it so that a ValueObject can control its constantness (hint: dynamic and synthetic values cannot be constant) and whether it wants to let itself be updated when an invalid thread is around
llvm-svn: 237504
Summary:
After r236447, ValueObject::GetAddressOf returns LLDB_INVALID_ADDRESS
when the value type is eValueHostAddress. For such a case, clients of
GetAddressOf should get the address from the scalar part of the value
instead of using the value returned by GetAddressOf directly.
This change also makes ValueObject::GetAddressOf set the address type to
eAddressTypeHost for values of eValueHostAddress so that clients can
recognize that they need to fetch the address from the scalar part
of the value.
Test Plan: ninja check-lldb on linux
Reviewers: clayborg, ovyalov
Reviewed By: ovyalov
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9490
llvm-svn: 236473
Summary:
This fixes TestRegisterVariables for clang and hence it is enabled in this commit.
Test Plan: dotest.py -C clang -p TestRegisterVariables
Reviewers: clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9421
llvm-svn: 236447
Summary:
The code for GetSyntheticArrayMemberFromPointer and
GetSyntheticArrayMemberFromArray was identical, so just collapse the
the methods into one.
Reviewers: granata.enrico, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7911
llvm-svn: 230708
There was a test in the test suite that was triggering the backtrace logging output that requested that the client pass an execution context. Sometimes we need the process for Objective C types because our static notion of the type might not align with the reality when being run in a live runtime.
Switched from an "ExecutionContext *" to an "ExecutionContextScope *" for greater ease of use.
llvm-svn: 228892
A runtime support value is a ValueObject whose only purpose is to support some language runtime's operation, but it does not directly provide any user-visible benefit
As such, unless the user is working on the runtime support, it is mostly safe for them not to see such a value when debugging
It is a language runtime's job to check whether a ValueObject is a support value, and that - in conjunction with a target setting - is used by frame variable and target variable
SBFrame::GetVariables gets a new overload with yet another flag to dictate whether to return those support values to the caller - that which defaults to the setting's value
rdar://problem/15539930
llvm-svn: 228791
And since enough of these are doing the right thing, add a test case to verify we are doing the right thing with freeze drying ObjC object types
Fixes rdar://18092770
llvm-svn: 227282
This is necessary because the byte size of an ObjC class type is not reliably statically knowable (e.g. because superclasses sit deep in frameworks that we have no debug info for)
The lack of reliable size info is a problem when trying to freeze-dry an ObjC instance (not the pointer, the pointee)
This commit lays the foundation for having language runtimes help in figuring out byte sizes, and having ClangASTType ask for runtime help
No feature change as no runtime actually implements the logic, and nowhere is an ExecutionContext passed in yet
llvm-svn: 227274
Most of the time, we can use context information just fine to choose a language (i.e. the language of the frame that the root object was defined in, if any); but in some cases, synthetic children may be fabricated as root frame-less entities, and then we wouldn't know any better
This patch allows (internal) synthetic child providers to set a display language on the children they generate, should they so choose
llvm-svn: 226634
It also comes with a (rudimentary) test case that gets itself in a failed update scenario, and checks that we don't crash
This is the easiest case I could think of that forces the failed update case Zachary was seeing
llvm-svn: 225463
Function pointers had a summary generated for them bypassing formatters, directly as part of the ValueObject subsystem
This patch transitions that code into a hardcoded summary
llvm-svn: 223906
Because of the way they are created, synthetic children cannot (in general) have a sane expression path
A solution to this would be letting the parent front-end generate expression paths for its children
Doing so requires a significant amount of refactoring, and might not always lead to better results (esp. w.r.t. C++ templates)
This commit takes a simpler approach:
- if a synthetic child is of pointer type and it's a target pointer, then emit *((T)value)
- if a synthetic child is a non-pointer, but its location is in the target, then emit *((T*)loadAddr)
- if a synthetic child has a value, emit ((T)value)
- else, don't emit anything
Fixes rdar://18442386
llvm-svn: 223836
track of the checksum of the object so we can
track if it is modified. This fixes a testcase
(test/expression_command/issue_11588) on OS X.
Patch by Enrico Granata.
llvm-svn: 223830