Summary:
This allows us to register it with the MachineFunction delegate and be
notified automatically about erasure and creation of instructions. However,
we still need explicit notification for modifications such as those caused
by setReg() or replaceRegWith().
There is a catch with this though. The notification for creation is
delivered before any operands can be added. While appropriate for
scheduling combiner work. This is unfortunate for debug output since an
opcode by itself doesn't provide sufficient information on what happened.
As a result, the work list remembers the instructions (when debug output is
requested) and emits a more complete dump later.
Another nit is that the MachineFunction::Delegate provides const pointers
which is inconvenient since we want to use it to schedule future
modification. To resolve this GISelWorkList now has an optional pointer to
the MachineFunction which describes the scope of the work it is permitted
to schedule. If a given MachineInstr* is in this function then it is
permitted to schedule work to be performed on the MachineInstr's. An
alternative to this would be to remove the const from the
MachineFunction::Delegate interface, however delegates are not permitted
to modify the MachineInstr's they receive.
In addition to this, the observer has three interface changes.
* erasedInstr() is now erasingInstr() to indicate it is about to be erased
but still exists at the moment.
* changingInstr() and changedInstr() have been added to report changes
before and after they are made. This allows us to trace the changes
in the debug output.
* As a convenience changingAllUsesOfReg() and
finishedChangingAllUsesOfReg() will report changingInstr() and
changedInstr() for each use of a given register. This is primarily useful
for changes caused by MachineRegisterInfo::replaceRegWith()
With this in place, both combine rules have been updated to report their
changes to the observer.
Finally, make some cosmetic changes to the debug output and make Combiner
and CombinerHelp
Reviewers: aditya_nandakumar, bogner, volkan, rtereshin, javed.absar
Reviewed By: aditya_nandakumar
Subscribers: mgorny, rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D52947
llvm-svn: 349167
Summary:
In addition to knowing that an instruction is changed. It's also useful to
know when it's about to change. For example, it might print the instruction so
you can track the changes in a debug log, it might remove it from some queue
while it's being worked on, or it might want to change several instructions as
a single transaction and act on all the changes at once.
Added changingInstr() to all existing uses of changedInstr()
Reviewers: aditya_nandakumar
Reviewed By: aditya_nandakumar
Subscribers: rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D55623
llvm-svn: 348992
Summary:
There's little of interest that can be done to an already-erased instruction.
You can't inspect it, write it to a debug log, etc. It ought to be notification
that we're about to erase it. Rename the function to clarify the timing of the
event and reflect current usage.
Also fixed one case where we were trying to print an erased instruction.
Reviewers: aditya_nandakumar
Reviewed By: aditya_nandakumar
Subscribers: rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D55611
llvm-svn: 348976
https://reviews.llvm.org/D55516
Add the ability to pass in flags to buildInstr calls. Currently no
validation is performed but that can be easily performed based on the
opcode (if necessary).
Reviewed by: paquette.
llvm-svn: 348893
https://reviews.llvm.org/D55294
Previously MachineIRBuilder::buildInstr used to accept variadic
arguments for sources (which were either unsigned or
MachineInstrBuilder). While this worked well in common cases, it doesn't
allow us to build instructions that have multiple destinations.
Additionally passing in other optional parameters in the end (such as
flags) is not possible trivially. Also a trivial call such as
B.buildInstr(Opc, Reg1, Reg2, Reg3)
can be interpreted differently based on the opcode (2defs + 1 src for
unmerge vs 1 def + 2srcs).
This patch refactors the buildInstr to
buildInstr(Opc, ArrayRef<DstOps>, ArrayRef<SrcOps>)
where DstOps and SrcOps are typed unions that know how to add itself to
MachineInstrBuilder.
After this patch, most invocations would look like
B.buildInstr(Opc, {s32, DstReg}, {SrcRegs..., SrcMIBs..});
Now all the other calls (such as buildAdd, buildSub etc) forward to
buildInstr. It also makes it possible to build instructions with
multiple defs.
Additionally in a subsequent patch, we should make it possible to add
flags directly while building instructions.
Additionally, the main buildInstr method is now virtual and other
builders now only have to override buildInstr (for say constant
folding/cseing) is straightforward.
Also attached here (https://reviews.llvm.org/F7675680) is a clang-tidy
patch that should upgrade the API calls if necessary.
llvm-svn: 348815
This patch restricts the capability of G_MERGE_VALUES, and uses the new
G_BUILD_VECTOR and G_CONCAT_VECTORS opcodes instead in the appropriate places.
This patch also includes AArch64 support for selecting G_BUILD_VECTOR of <4 x s32>
and <2 x s64> vectors.
Differential Revisions: https://reviews.llvm.org/D53629
llvm-svn: 348788
Record the stack protector index in MachineFrameInfo when translating
Intrinsic::stackprotector similarly as is done by SelectionDAG when
processing the same intrinsic.
Setting this index allows the Prologue/Epilogue Insertion to recognize
that the stack protection is enabled. The pass can then make sure that
the stack protector comes before local variables on the stack and
assigns potentially vulnerable objects first so they are close to the
stack protector slot.
Differential Revision: https://reviews.llvm.org/D55418
llvm-svn: 348761
These opcodes are intended to subsume some of the capability of G_MERGE_VALUES,
as it was too powerful and thus complex to add deal with throughout the GISel
pipeline.
G_BUILD_VECTOR creates a vector value from a sequence of uniformly typed
scalar values. G_BUILD_VECTOR_TRUNC is a special opcode for handling scalar
operands which are larger than the destination vector element type, and
therefore does an implicit truncate.
G_CONCAT_VECTOR creates a vector by concatenating smaller, uniformly typed,
vectors together.
These will be used in a subsequent commit. This commit just adds the initial
infrastructure.
Differential Revision: https://reviews.llvm.org/D53594
llvm-svn: 348430
https://reviews.llvm.org/D54980
This provides a standard API across GISel passes to observe and notify
passes about changes (insertions/deletions/mutations) to MachineInstrs.
This patch also removes the recordInsertion method in MachineIRBuilder
and instead provides method to setObserver.
Reviewed by: vkeles.
llvm-svn: 348406
We can now select CLZ via the TableGen'erated code, so support G_CTLZ
and G_CTLZ_ZERO_UNDEF throughout the pipeline for types <= s32.
Legalizer:
If the CLZ instruction is available, use it for both G_CTLZ and
G_CTLZ_ZERO_UNDEF. Otherwise, use a libcall for G_CTLZ_ZERO_UNDEF and
lower G_CTLZ in terms of it.
In order to achieve this we need to add support to the LegalizerHelper
for the legalization of G_CTLZ_ZERO_UNDEF for s32 as a libcall (__clzsi2).
We also need to allow lowering of G_CTLZ in terms of G_CTLZ_ZERO_UNDEF
if that is supported as a libcall, as opposed to just if it is Legal or
Custom. Due to a minor refactoring of the helper function in charge of
this, we will also allow the same behaviour for G_CTTZ and G_CTPOP.
This is not going to be a problem in practice since we don't yet have
support for treating G_CTTZ and G_CTPOP as libcalls (not even in
DAGISel).
Reg bank select:
Map G_CTLZ to GPR. G_CTLZ_ZERO_UNDEF should not make it to this point.
Instruction select:
Nothing to do.
llvm-svn: 347545
The IEEE-754 Standard makes it clear that fneg(x) and
fsub(-0.0, x) are two different operations. The former is a bitwise
operation, while the latter is an arithmetic operation. This patch
creates a dedicated FNeg IR Instruction to model that behavior.
Differential Revision: https://reviews.llvm.org/D53877
llvm-svn: 346774
This adds the llvm-side support for post-inlining evaluation of the
__builtin_constant_p GCC intrinsic.
Also fixed SCCPSolver::visitCallSite to not blow up when seeing a call
to a function where canConstantFoldTo returns true, and one of the
arguments is a struct.
Updated from patch initially by Janusz Sobczak.
Differential Revision: https://reviews.llvm.org/D4276
llvm-svn: 346322
https://reviews.llvm.org/D53304
Currently dead phis are not cleaned up during DCE. This patch allows
dead PHI and G_PHI insts to be deleted.
Reviewed by: dsanders
llvm-svn: 344811
Port over the implementation in SelectionDAGBuilder.cpp into the IRTranslator
and update the arm64-irtranslator test.
These were causing fallbacks in CTMark/Bullet (-Rpass-missed=gisel-select),
and this patch fixes that.
https://reviews.llvm.org/D52945
llvm-svn: 343885
The simplest instance of this is an intrinsic with no results which will have the
intrinsic ID as operand 0.
Also fix some benign incorrectness when op0 is a reg but isn't a def that was
guarded against by checking for the extension opcodes.
llvm-svn: 343821
This brings the extending loads patch back to the original intent but minus the
PHI bug and with another small improvement to de-dupe truncates that are
inserted into the same block.
The truncates are sunk to their uses unless this would require inserting before a
phi in which case it sinks to the _beginning_ of the predecessor block for that
path (but no earlier than the def).
The reason for choosing the beginning of the predecessor is that it makes de-duping
multiple truncates in the same block simple, and optimized code is going to run a
scheduler at some point which will likely change the position anyway.
llvm-svn: 343804
This fixes a problem where the register allocator fails to eliminate a PHI
because there's a non-PHI in the middle of the PHI instructions at the start
of a BB.
This G_TRUNC can be better placed but this at least fixes the correctness issue
quickly. I'll follow up with a patch to the verifier to catch this kind of bug
in future.
llvm-svn: 343693
Summary: Depends on D45541
Reviewers: ab, aditya_nandakumar, bogner, rtereshin, volkan, rovka, javed.absar, aemerson
Subscribers: aemerson, rengolin, mgorny, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D45543
The previous commit failed portions of the test-suite on GreenDragon due to
duplicate COPY instructions and iterator invalidation. Both issues have now
been fixed. To assist with this, a helper (cloneVirtualRegister) has been added
to MachineRegisterInfo that can be used to get another register that has the same
type and class/bank as an existing one.
llvm-svn: 343654
There's a strange assertion on two of the Green Dragon bots that goes away when
this is reverted. The assertion is in RegBankAlloc and if it is this commit then
-verify-machine-instrs should have caught it earlier in the pipeline.
llvm-svn: 343546
Clang-cl was complaining about some sort of constexpr narrowing bug:
C:\src\llvm-project\llvm\lib\CodeGen\GlobalISel\CombinerHelper.cpp(136,31): error: non-constant-expression cannot be narrowed from type 'llvm::TargetOpcode::(anonymous enum at C:\src\llvm-project\llvm\include\llvm/CodeGen/TargetOpcodes.h:22:1)' to 'unsigned int' in initializer list [-Wc++11-narrowing]
unsigned(MI.getOpcode()) == unsigned(TargetOpcode::G_LOAD)
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
C:\src\llvm-project\llvm\lib\CodeGen\GlobalISel\CombinerHelper.cpp(136,31): note: insert an explicit cast to silence this issue
unsigned(MI.getOpcode()) == unsigned(TargetOpcode::G_LOAD)
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
static_cast<unsigned int>(
llvm-svn: 343541
https://reviews.llvm.org/D51147
Asserting if any extend of vectors should be up to the target's
legalizer/target specific code not in CallLowering.
reviewed by : dsanders.
llvm-svn: 343325
Summary:
We have `llvm::addLandingPadInfo` and `MachineFunction::addLandingPad`,
both of which add landing pad information to populate `LandingPadInfo`
but are called from different locations, which was confusing. This patch
unifies them with one `MachineFunction::addLandingPad` function, which
now has functionlities of both functions.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52428
llvm-svn: 343018
Summary: This patch adds a GlobalIsel copy utility into MI for flags and updates the instruction emitter for the SDAG path. Some tests show new behavior and I added one for GlobalIsel which mirrors an SDAG test for handling nsw/nuw.
Reviewers: spatel, wristow, arsenm
Reviewed By: arsenm
Subscribers: wdng
Differential Revision: https://reviews.llvm.org/D52006
llvm-svn: 342576
https://reviews.llvm.org/D51197
Currently, IRTranslator (and GISel) seems to be arbitrarily picking
which overflow intrinsics get mapped into opcodes which either have a
carry as an input or not.
For intrinsics such as Intrinsic::uadd_with_overflow, translate it to an
opcode (G_UADDO) which doesn't have any carry inputs (similar to LLVM
IR).
This patch adds 4 missing opcodes for completeness - G_UADDO, G_USUBO,
G_SSUBE and G_SADDE.
llvm-svn: 340865
The core get and set routines move to the `Instruction` class. These
routines are only valid to call on instructions which are terminators.
The iterator and *generic* range based access move to `CFG.h` where all
the other generic successor and predecessor access lives. While moving
the iterator here, simplify it using the iterator utilities LLVM
provides and updates coding style as much as reasonable. The APIs remain
pointer-heavy when they could better use references, and retain the odd
behavior of `operator*` and `operator->` that is common in LLVM
iterators. Adjusting this API, if desired, should be a follow-up step.
Non-generic range iteration is added for the two instructions where
there is an especially easy mechanism and where there was code
attempting to use the range accessor from a specific subclass:
`indirectbr` and `br`. In both cases, the successors are contiguous
operands and can be easily iterated via the operand list.
This is the first major patch in removing the `TerminatorInst` type from
the IR's instruction type hierarchy. This change was discussed in an RFC
here and was pretty clearly positive:
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123407.html
There will be a series of much more mechanical changes following this
one to complete this move.
Differential Revision: https://reviews.llvm.org/D47467
llvm-svn: 340698
This reverts commit d1341152d91398e9a882ba2ee924147ea2f9b589.
This patch originally made use of Nested MachineIRBuilder buildInstr
calls, and since order of argument processing is not well defined, the
instructions were built slightly in a different order (still correct).
I've removed the nested buildInstr calls to have a defined order now.
Patch was tested by Mikael.
llvm-svn: 340309
This reverts commit 7debc334e6421bb5251ef8f18e97166dfc7dd787.
I missed updating legalizer-info-validation.mir as I had assertions
turned off in my build and that specific test requires asserts. Fixed it
now.
llvm-svn: 340197
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
It also generates label debug information under global isel.
Differential Revision: https://reviews.llvm.org/D45556
llvm-svn: 340039
https://reviews.llvm.org/D50401
Add opcodes for llvm.intrinsic.trunc, round, and update the IRTranslator
for the same.
Reviewed by: dsanders.
llvm-svn: 339977