This is the next step towards being able to write PDBs.
MemoryBuffer is immutable, and StreamInterface is our replacement
which can be any combination of read-only, read-write, or write-only
depending on the particular implementation.
The one place where we were creating a PDBFile (in RawSession) is
updated to subclass ByteStream with a simple adapter that holds
a MemoryBuffer, and initializes the superclass with the buffer's
array, so that all the functionality of ByteStream works
transparently.
llvm-svn: 272370
This adds method and tests for writing to a PDB stream. With
this, even a PDB stream which is discontiguous can be treated
as a sequential stream of bytes for the purposes of writing.
Reviewed By: ruiu
Differential Revision: http://reviews.llvm.org/D21157
llvm-svn: 272369
TPI hash table contains a parallel array for the type records.
For each type record R, a hash value is calculated by `H(R) % NumBuckets`
where H is a hash function, and the result is stored to a bucket element.
H is TPI1::hashPrec function in microsoft-pdb repository.
Our hash function does not support all type record types yet.
Currently it supports only records for line number.
I'll extend it in a follow up patch.
The aim of verify the hash table is not only detect corrupted files.
It ensures that our understanding of how the hash values are calculated
is correct.
llvm-svn: 272229
In order to efficiently write PDBs, we need to be able to make a
StreamWriter class similar to a StreamReader, which can transparently deal
with writing to discontiguous streams, and we need to use this for all
writing, similar to how we use StreamReader for all reading.
Most discontiguous streams are the typical numbered streams that appear in
a PDB file and are described by the directory, but the exception to this,
that until now has been parsed by hand, is the directory itself.
MappedBlockStream works by querying the directory to find out which blocks
a stream occupies and various other things, so naturally the same logic
could not possibly work to describe the blocks that the directory itself
resided on.
To solve this, I've introduced an abstraction IPDBStreamData, which allows
the client to query for the list of blocks occupied by the stream, as well
as the stream length. I provide two implementations of this: one which
queries the directory (for indexed streams), and one which queries the
super block (for the directory stream).
This has the side benefit of vastly simplifying the code to parse the
directory. Whereas before a mini state machine was rolled by hand, now we
simply use FixedStreamArray to read out the stream sizes, then build a
vector of FixedStreamArrays for the stream map, all in just a few lines of
code.
Reviewed By: ruiu
Differential Revision: http://reviews.llvm.org/D21046
llvm-svn: 271982
The data strucutre in the new FPO stream is described in the
PE/COFF spec. There is one record per function if frame pointer
is omitted.
Differential Revision: http://reviews.llvm.org/D20999
llvm-svn: 271926
Summary:
Previously we would try to load PDBs for every PE executable we tried to
symbolize. If that failed, we would fall back to DWARF. If there wasn't
any DWARF, we'd print mostly useless symbol information using the export
table.
With this change, we only try to load PDBs for executables that claim to
have them. If that fails, we can now print an error rather than falling
back silently. This should make it a lot easier to diagnose and fix
common symbolization issues, such as not having DIA or not having a PDB.
Reviewers: zturner, eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20982
llvm-svn: 271725
This only translates data members for now. Translating overloaded
methods is complicated, so I stopped short of doing that.
Reviewers: aaboud
Differential Revision: http://reviews.llvm.org/D20924
llvm-svn: 271680
When printing line information and file checksums, we were printing
the file offset field from the struct header. This teaches
llvm-pdbdump how to turn those numbers into the filename. In the
case of file checksums, this is done by looking in the global
string table. In the case of line contributions, this is done
by indexing into the file names buffer of the DBI stream. Why
they use a different technique I don't know.
llvm-svn: 271630
To facilitate this, a couple of changes had to be made:
1. `ModuleSubstream` got moved from `DebugInfo/PDB` to
`DebugInfo/CodeView`, and various codeview related types are defined
there. It turns out `DebugInfo/CodeView/Line.h` already defines many of
these structures, but this is really old code that is not endian aware,
doesn't interact well with `StreamInterface` and not very helpful for
getting stuff out of a PDB. Eventually we should migrate the old readobj
`COFFDumper` code to these new structures, or at least merge their
functionality somehow.
2. A `ModuleSubstream` visitor is introduced. Depending on where your
module substream array comes from, different subsets of record types can
be expected. We are already hand parsing these substream arrays in many
places especially in `COFFDumper.cpp`. In the future we can migrate these
paths to the visitor as well, which should reduce a lot of code in
`COFFDumper.cpp`.
Differential Revision: http://reviews.llvm.org/D20936
Reviewed By: ruiu, majnemer
llvm-svn: 271621
This first pass only splits apart the records and dumps the line
info kinds and binary data. Subsequent patches will parse out
the binary data into more useful information and dump it in
detail.
llvm-svn: 271576
StreamRef was designed to be a thin wrapper over an abstract
stream interface that could itself be treated the same as any
other stream interface. For this reason, it inherited publicly
from StreamInterface, and stored a StreamInterface* internally.
But StreamRef was also designed to be lightweight and easily
copyable, similar to ArrayRef. This led to two misuses of
the classes.
1) When creating a StreamRef A from another StreamRef B, it was
possible to end up with A storing a pointer to B, even when
B was a temporary object, leading to use after free.
2) The above situation could be repeated ad nauseum, so that
A stores a pointer to B, which itself stores a pointer to
another StreamRef C, and so on and so on, creating an
unnecessarily level of nesting depth.
This patch removes the public inheritance relationship between
StreamRef and StreamInterface, making it so that we can never
accidentally convert a StreamRef to a StreamInterface.
llvm-svn: 271570
Unlike other sections that can grow to any size, the COFF section header
stream has maximum length because each record is fixed size and the COFF
file format limits the maximum number of sections. So I decided to not
create a specific stream class for it. Instead, I added a member function
to DbiStream class which returns a vector of COFF headers.
Differential Revision: http://reviews.llvm.org/D20717
llvm-svn: 271557
when the object is from a slice of a Mach-O Universal Binary use something like
"foo.o (for architecture i386)" as part of the error message when expected.
Also fixed places in these tools that were ignoring object file errors from
MachOUniversalBinary::getAsObjectFile() when the code moved on to see if
the slice was an archive.
To do this MachOUniversalBinary::getAsObjectFile() and
MachOUniversalBinary::getObjectForArch() were changed from returning
ErrorOr<...> to Expected<...> then that was threaded up to its users.
Converting these interfaces to Expected<> from ErrorOr<> does involve
touching a number of places. To contain the changes for now the use of
errorToErrorCode() is still used in two places yet to be fully converted.
llvm-svn: 271332
Adds the method MCStreamer::EmitBinaryData, which is usually an alias
for EmitBytes. In the MCAsmStreamer case, it is overridden to emit hex
dump output like this:
.byte 0x0e, 0x00, 0x08, 0x10
.byte 0x03, 0x00, 0x00, 0x00
.byte 0x00, 0x00, 0x00, 0x00
.byte 0x00, 0x10, 0x00, 0x00
Also, when verbose asm comments are enabled, this patch prints the dump
output for each comment before its record, like this:
# ArgList (0x1000) {
# TypeLeafKind: LF_ARGLIST (0x1201)
# NumArgs: 0
# Arguments [
# ]
# }
.byte 0x06, 0x00, 0x01, 0x12
.byte 0x00, 0x00, 0x00, 0x00
This should make debugging easier and testing more convenient.
Reviewers: aaboud
Subscribers: majnemer, zturner, amccarth, aaboud, llvm-commits
Differential Revision: http://reviews.llvm.org/D20711
llvm-svn: 271313
This converts remaining uses of ByteStream, which was still
left in the symbol stream and type stream, to using the new
StreamInterface zero-copy classes.
RecordIterator is finally deleted, so this is the only way left
now. Additionally, more error checking is added when iterating
the various streams.
With this, the transition to zero copy pdb access is complete.
llvm-svn: 271101