Summary:
With DWARF5 it is no longer possible to distinguish normal methods and methods with `__attribute__((objc_direct))` by just looking at the debug information
as they are both now children of the of the DW_TAG_structure_type that defines them (before only the `__attribute__((objc_direct))` methods were children).
This means that in LLDB we are no longer able to create a correct Clang AST of a module by just looking at the debug information. Instead we would
need to call the Objective-C runtime to see which of the methods have a `__attribute__((objc_direct))` and then add the attribute to our own Clang AST
depending on what the runtime returns. This would mean that we either let the module AST be dependent on the Objective-C runtime (which doesn't
seem right) or we retroactively add the missing attribute to the imported AST in our expressions.
A third option is to annotate methods with `__attribute__((objc_direct))` as `DW_AT_APPLE_objc_direct` which is what this patch implements. This way
LLDB doesn't have to call the runtime for any `__attribute__((objc_direct))` method and the AST in our module will already be correct when we create it.
Reviewers: aprantl, SouraVX
Reviewed By: aprantl
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D71201
Copy the block to the heap before passing it to the callee in case the
block escapes in the callee.
rdar://problem/55683462
Differential Revision: https://reviews.llvm.org/D71431
Very few ELF platforms still use .ctors/.dtors now. Linux (glibc: 1999-07),
DragonFlyBSD, FreeBSD (2012-03) and Solaris have supported .init_array
for many years. Some architectures like AArch64/RISC-V default to
.init_array . GNU ld and gold can even convert .ctors to .init_array .
It makes more sense to flip the CC1 default, and only uses
-fno-use-init-array on platforms that don't support .init_array .
For example, OpenBSD did not support DT_INIT_ARRAY before Aug 2016
(86fa57a279)
I may miss some ELF platforms that still use .ctors, but their
maintainers can easily diagnose such problems.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D71393
This commit sets the Self and Imp declarations for ObjC method declarations,
in addition to the definitions. It also fixes
a bunch of code in clang that had wrong assumptions about when getSelfDecl() would be set:
- CGDebugInfo::getObjCMethodName and AnalysisConsumer::getFunctionName would assume that it was
set for method declarations part of a protocol, which they never were,
and that self would be a Class type, which it isn't as it is id for a protocol.
Also use the Canonical Decl to index the set of Direct methods so that
when calls and implementations interleave, the same llvm::Function is
used and the same symbol name emitted.
Radar-Id: rdar://problem/57661767
Patch by: Pierre Habouzit
Differential Revision: https://reviews.llvm.org/D71091
ExpandTypeFromArgs
This fixes a bug in IRGen where a call to `llvm.objc.storeStrong` was
being emitted to initialize a __strong field of an uninitialized
temporary struct, which caused crashes at runtime.
rdar://problem/51807365
even in DWARF 4 and earlier. This allows the debugger to recognize
them as direct functions as opposed to Objective-C methods.
<rdar://problem/57327663>
Differential Revision: https://reviews.llvm.org/D70544
Assign artificial locations to calls to special struct-related helper
functions.
Such calls may not inherit a location if emitted within FinishFunction,
at which point the lexical scope stack may be empty, causing CGDebugInfo
to report the current DebugLoc as empty.
Fixes an IR verifier complaint about a call to '__destructor_8_s0' not
having a !dbg location attached.
rdar://57293361
__attribute__((objc_direct)) is an attribute on methods declaration, and
__attribute__((objc_direct_members)) on implementation, categories or
extensions.
A `direct` property specifier is added (@property(direct) type name)
These attributes / specifiers cause the method to have no associated
Objective-C metadata (for the property or the method itself), and the
calling convention to be a direct C function call.
The symbol for the method has enforced hidden visibility and such direct
calls are hence unreachable cross image. An explicit C function must be
made if so desired to wrap them.
The implicit `self` and `_cmd` arguments are preserved, however to
maintain compatibility with the usual `objc_msgSend` semantics,
3 fundamental precautions are taken:
1) for instance methods, `self` is nil-checked. On arm64 backends this
typically adds a single instruction (cbz x0, <closest-ret>) to the
codegen, for the vast majority of the cases when the return type is a
scalar.
2) for class methods, because the class may not be realized/initialized
yet, a call to `[self self]` is emitted. When the proper deployment
target is used, this is optimized to `objc_opt_self(self)`.
However, long term we might want to emit something better that the
optimizer can reason about. When inlining kicks in, these calls
aren't optimized away as the optimizer has no idea that a single call
is really necessary.
3) the calling convention for the `_cmd` argument is changed: the caller
leaves the second argument to the call undefined, and the selector is
loaded inside the body when it's referenced only.
As far as error reporting goes, the compiler refuses:
- making any overloads direct,
- making an overload of a direct method,
- implementations marked as direct when the declaration in the
interface isn't (the other way around is allowed, as the direct
attribute is inherited from the declaration),
- marking methods required for protocol conformance as direct,
- messaging an unqualified `id` with a direct method,
- forming any @selector() expression with only direct selectors.
As warnings:
- any inconsistency of direct-related calling convention when
@selector() or messaging is used,
- forming any @selector() expression with a possibly direct selector.
Lastly an `objc_direct_members` attribute is added that can decorate
`@implementation` blocks and causes methods only declared there (and in
no `@interface`) to be automatically direct. When decorating an
`@interface` then all methods and properties declared in this block are
marked direct.
Radar-ID: rdar://problem/2684889
Differential Revision: https://reviews.llvm.org/D69991
Reviewed-By: John McCall
This has the nice side-effect of also fixing a crash in Clang.
Starting with DWARF 5 we are emitting ObjC method declarations as
children of their containing entity. This worked for interfaces, but
didn't consider the case of synthessized properties. When a property
of a protocol is synthesized in an interface implementation the
ObjCMethodDecl that was passed to CGF::StartFunction was the property
*declaration* which obviously couldn't have a containing
interface. This patch passes the containing interface all the way
through to CGDebugInfo, so the function declaration can be created
with the correct parent (= the class implementing the protocol).
rdar://problem/53782400
Differential Revision: https://reviews.llvm.org/D66121
This patch is motivated by (and factored out from)
https://reviews.llvm.org/D66121 which is a debug info bugfix. Starting
with DWARF 5 all Objective-C methods are nested inside their
containing type, and that patch implements this for synthesized
Objective-C properties.
1. SemaObjCProperty populates a list of synthesized accessors that may
need to inserted into an ObjCImplDecl.
2. SemaDeclObjC::ActOnEnd inserts forward-declarations for all
accessors for which no override was provided into their
ObjCImplDecl. This patch does *not* synthesize AST function
*bodies*. Moving that code from the static analyzer into Sema may
be a good idea though.
3. Places that expect all methods to have bodies have been updated.
I did not update the static analyzer's inliner for synthesized
properties to point back to the property declaration (see
test/Analysis/Inputs/expected-plists/nullability-notes.m.plist), which
I believed to be more bug than a feature.
Differential Revision: https://reviews.llvm.org/D68108
rdar://problem/53782400
non-trivial C union types
This recommits r365985, which was reverted because it broke a few
projects using unions containing non-trivial ObjC pointer fields in
system headers. We now have a patch to fix the problem (see
https://reviews.llvm.org/D65256).
Original commit message:
This patch diagnoses uses of non-trivial C unions and structs/unions
containing non-trivial C unions in the following contexts, which require
default-initialization, destruction, or copying of the union objects,
instead of disallowing fields of non-trivial types in C unions, which is
what we currently do:
- function parameters.
- function returns.
- assignments.
- compound literals.
- block captures except capturing of `__block` variables by non-escaping blocks.
- local and global variable definitions.
- lvalue-to-rvalue conversions of volatile types.
See the discussion in https://reviews.llvm.org/D62988 for more background.
rdar://problem/50679094
Differential Revision: https://reviews.llvm.org/D63753
llvm-svn: 371275
This patch adds the SVE built-in types defined by the Procedure Call
Standard for the Arm Architecture:
https://developer.arm.com/docs/100986/0000
It handles the types in all relevant places that deal with built-in types.
At the moment, some of these places bail out with an error, including:
(1) trying to generate LLVM IR for the types
(2) trying to generate debug info for the types
(3) trying to mangle the types using the Microsoft C++ ABI
(4) trying to @encode the types in Objective C
(1) and (2) are fixed by follow-on patches but (unlike this patch)
they deal mostly with target-specific LLVM details, so seemed like
a logically separate change. There is currently no spec for (3) and
(4), so reporting an error seems like the correct behaviour for now.
The intention is that the types will become sizeless types:
http://lists.llvm.org/pipermail/cfe-dev/2019-June/062523.html
The main purpose of the sizeless type extension is to diagnose
impossible or dangerous uses of the types, such as any that would
require sizeof to have a meaningful defined value.
Until then, the patch sets the alignments of the types to the values
specified in the link above. It also sets the sizes of the types to
zero, which is chosen to be consistently wrong and shouldn't affect
correctly-written code (i.e. code that would compile even with the
sizeless type extension).
The patch adds the common subset of functionality needed to test the
sizeless type extension on the one hand and to provide SVE intrinsic
functions on the other. After this patch, the two pieces of work are
essentially independent.
The patch is based on one by Graham Hunter:
https://reviews.llvm.org/D59245
Differential Revision: https://reviews.llvm.org/D62960
llvm-svn: 368413
For consistency with normal instructions and clarity when reading IR,
it's best to print the %0, %1, ... names of function arguments in
definitions.
Also modifies the parser to accept IR in that form for obvious reasons.
llvm-svn: 367755
This reverts commit r365985.
Prior to r365985, clang used to mark C union fields that have
non-trivial ObjC ownership qualifiers as unavailable if the union was
declared in a system header. r365985 stopped doing so, which caused the
swift compiler to crash when it tried to import a non-trivial union.
I have a patch that fixes the crash (https://reviews.llvm.org/D65256),
but I'm temporarily reverting the original patch until we can decide on
whether it's taking the right approach.
llvm-svn: 367076
non-trivial C union types
This patch diagnoses uses of non-trivial C unions and structs/unions
containing non-trivial C unions in the following contexts, which require
default-initialization, destruction, or copying of the union objects,
instead of disallowing fields of non-trivial types in C unions, which is
what we currently do:
- function parameters.
- function returns.
- assignments.
- compound literals.
- block captures except capturing of `__block` variables by non-escaping
blocks.
- local and global variable definitions.
- lvalue-to-rvalue conversions of volatile types.
See the discussion in https://reviews.llvm.org/D62988 for more background.
rdar://problem/50679094
Differential Revision: https://reviews.llvm.org/D63753
llvm-svn: 365985
As per the discussion on D58375, we disable test that have optimizations under
the new PM. This patch adds -fno-experimental-new-pass-manager to RUNS that:
- Already run with optimizations (-O1 or higher) that were missed in D58375.
- Explicitly test new PM behavior along side some new PM RUNS, but are missing
this flag if new PM is enabled by default.
- Specify -O without the number. Based on getOptimizationLevel(), it seems the
default is 2, and the IR appears to be the same when changed to -O2, so
update the test to explicitly say -O2 and provide -fno-experimental-new-pass-manager`.
Differential Revision: https://reviews.llvm.org/D63156
llvm-svn: 364066
Third time's the charm.
This was reverted in r363220 due to being suspected of an internal benchmark
regression and a test failure, none of which turned out to be caused by this.
llvm-svn: 363529
'objc_arc_inert'
The attribute enables the ARC optimizer to delete ObjC ARC runtime calls
on the annotated globals (see https://reviews.llvm.org/D62433). We
currently only annotate global variables for string literals and global
blocks with the attribute.
rdar://problem/49839633
Differential Revision: https://reviews.llvm.org/D62831
llvm-svn: 363467
We have observed some failures with internal builds with this revision.
- Performance regressions:
- llvm's SingleSource/Misc evalloop shows performance regressions (although these may be red herrings).
- Benchmarks for Abseil's SwissTable.
- Correctness:
- Failures for particular libicu tests when building the Google AppEngine SDK (for PHP).
hwennborg has already been notified, and is aware of reproducer failures.
llvm-svn: 363220
'objc_alloc(self)'
Also convert '[[self alloc] init]' in a class method to a call to
'objc_alloc_init(self)'.
rdar://problem/50855121
Differential Revision: https://reviews.llvm.org/D62643
llvm-svn: 362521
Swift requires certain classes to be not just initialized lazily on first
use, but actually allocated lazily using information that is only available
at runtime. This is incompatible with ObjC class initialization, or at least
not efficiently compatible, because there is no meaningful class symbol
that can be put in a class-ref variable at load time. This leaves ObjC
code unable to access such classes, which is undesirable.
objc_class_stub says that class references should be resolved by calling
a new ObjC runtime function with a pointer to a new "class stub" structure.
Non-ObjC compilers (like Swift) can simply emit this structure when ObjC
interop is required for a class that cannot be statically allocated,
then apply this attribute to the `@interface` in the generated ObjC header
for the class.
This attribute can be thought of as a generalization of the existing
`objc_runtime_visible` attribute which permits more efficient class
resolution as well as supporting the additon of categories to the class.
Subclassing these classes from ObjC is currently not allowed.
Patch by Slava Pestov!
llvm-svn: 362054
clang was encoding pointers to typedefs as if they were pointers to
structs because that is apparently what gcc is doing.
For example:
```
@class Class1;
typedef NSArray<Class1 *> MyArray;
void foo1(void) {
const char *s0 = @encode(MyArray *); // "^{NSArray=#}"
const char *s1 = @encode(NSArray<Class1 *> *); // "@"
}
```
This commit removes the code that was there to make clang compatible
with gcc and make clang emit the correct encoding for ObjC pointers,
which is "@".
rdar://problem/50563529
Differential Revision: https://reviews.llvm.org/D61974
llvm-svn: 362034
This was reverted in r360086 as it was supected of causing mysterious test
failures internally. However, it was never concluded that this patch was the
root cause.
> The code was previously checking that candidates for sinking had exactly
> one use or were a store instruction (which can't have uses). This meant
> we could sink call instructions only if they had a use.
>
> That limitation seemed a bit arbitrary, so this patch changes it to
> "instruction has zero or one use" which seems more natural and removes
> the need to special-case stores.
>
> Differential revision: https://reviews.llvm.org/D59936
llvm-svn: 361811
necessary.
Prior to r349952, clang used to call objc_msgSend when sending a release
messages, emitting an invoke instruction instead of a call instruction
when it was necessary to catch an exception. That changed in r349952
because runtime function objc_release is called as a nounwind function,
which broke programs that were overriding the dealloc method and
throwing an exception from it. This patch restores the behavior prior to
r349952.
rdar://problem/50253394
Differential Revision: https://reviews.llvm.org/D61803
llvm-svn: 360474
private symbols in the __DATA segment internal.
This prevents the linker from removing the symbol names. Keeping the
symbols visible enables tools to collect various information about the
symbols, for example, tools that discover whether or not a symbol gets
dirtied.
rdar://problem/48887111
Differential Revision: https://reviews.llvm.org/D61454
llvm-svn: 360359
This reverts r357452 (git commit 21eb771dcb).
This was causing strange optimization-related test failures on an internal test. Will followup with more details offline.
llvm-svn: 360086
error: unable to create target: 'No available targets are compatible with triple "< ... any 64-bit target triple ... >"'
I didn't find any 64-bit dependencies for the test and I think removing '-m64' option should fix the problem and allow this test for any target specified by LLVM_DEFAULT_TARGET_TRIPLE.
Patch by Vlad Vereschaka.
Differential Revision: https://reviews.llvm.org/D61345
llvm-svn: 360005
This reverts r359250 (git commit 4730604bd3)
The newly added test should use -cc1 and -emit-llvm and there are other
test failures that need fixing.
llvm-svn: 359251
Statically link certain runtime library functions for MSVC/GNU Windows
environments. This is consistent with MSVC behavior.
Fixes LNK4286 and LNK4217 warnings from link.exe when linking the static
CRT:
LINK : warning LNK4286: symbol '__std_terminate' defined in 'libvcruntime.lib(ehhelpers.obj)' is imported by 'ASAN_NOINST_TEST_OBJECTS.asan_noinst_test.cc.x86_64-calls.o'
LINK : warning LNK4286: symbol '__std_terminate' defined in 'libvcruntime.lib(ehhelpers.obj)' is imported by 'ASAN_NOINST_TEST_OBJECTS.asan_test_main.cc.x86_64-calls.o'
LINK : warning LNK4217: symbol '_CxxThrowException' defined in 'libvcruntime.lib(throw.obj)' is imported by 'ASAN_NOINST_TEST_OBJECTS.gtest-all.cc.x86_64-calls.o' in function '"int `public: static class UnitTest::GetInstance * __cdecl testing::UnitTest::GetInstance(void)'::`1'::dtor$5" (?dtor$5@?0??GetInstance@UnitTest@testing@@SAPEAV12@XZ@4HA)'
Reviewers: mstorsjo, efriedma, TomTan, compnerd, smeenai, mgrang
Subscribers: abdulras, theraven, smeenai, pcc, mehdi_amini, javed.absar, inglorion, kristof.beyls, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D55229
llvm-svn: 359250
The original commit caused false positives from AddressSanitizer's
use-after-scope checks, which have now been fixed in r358478.
> The code was previously checking that candidates for sinking had exactly
> one use or were a store instruction (which can't have uses). This meant
> we could sink call instructions only if they had a use.
>
> That limitation seemed a bit arbitrary, so this patch changes it to
> "instruction has zero or one use" which seems more natural and removes
> the need to special-case stores.
>
> Differential revision: https://reviews.llvm.org/D59936
llvm-svn: 358483
This test was duplicated, and the last declaration had some syntax errors since
the invalid attribute caused the @implementation to be skipped by the parser.
llvm-svn: 358136
named metadata.
This fixes a bug where ARC contract wasn't inserting the retainRV
marker when LTO was enabled, which caused objects returned from a
function to be auto-released.
rdar://problem/49464214
Differential Revision: https://reviews.llvm.org/D60302
llvm-svn: 358048
This revision causes tests to fail under ASAN. Since the cause of the failures
is not clear (could be ASAN, could be a Clang bug, could be a bug in this
revision), the safest course of action seems to be to revert while investigating.
llvm-svn: 357667
The code was previously checking that candidates for sinking had exactly
one use or were a store instruction (which can't have uses). This meant
we could sink call instructions only if they had a use.
That limitation seemed a bit arbitrary, so this patch changes it to
"instruction has zero or one use" which seems more natural and removes
the need to special-case stores.
Differential revision: https://reviews.llvm.org/D59936
llvm-svn: 357452
Summary:
Based on a patch by Dustin Howett, modified to not change the ABI for
ELF platforms.
Use more Windows-like section names.
This also makes things more readable by PE/COFF debug tools that assume
sections fit in the first header.
With these changes in, it is now possible to build a working WinObjC
with clang and the WinObjC version of GNUstep libobjc (upstream GNUstep
libobjc + a work around for incremental linking, which can be removed
once LINK.EXE gains a feature to opt sections out of receiving extra
padding during an incremental link).
Patch by Dustin Howett!
Reviewers: DHowett-MSFT
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58724
llvm-svn: 357364
Without this change, linking multiple objects containing block
descriptors together on Windows will generate duplicate symbol errors.
Patch by Dustin Howett!
Differential Revision: https://reviews.llvm.org/D58807
llvm-svn: 357363
copy/move constructor/assignment operator functions for non-trivial C
structs.
This commit fixes a bug where the offset of struct fields weren't being
taken into account when computing the addresses passed to calls to the
special functions.
For example, the copy constructor for S1 (__copy_constructor_8_8_s0_s8)
would pass the start addresses of the destination and source structs to
the call to S0's copy constructor (_copy_constructor_8_8_s0) without
adding the offset of field f1 to the addresses.
typedef struct {
id f0;
S0 f1;
} S1;
void test(S1 s1) {
S1 t = s1;
}
rdar://problem/49400610
llvm-svn: 357229