Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
On s390, siginfo reports the faulting address with page granularity -
we need to mask off the low bits of sp before comparison.
Differential Revision: http://reviews.llvm.org/D19112
llvm-svn: 266593
I have no idea how I chose two different spellings in the space of a
couple of weeks, but now I can't remember what to use where. Choose
"Worklist".
llvm-svn: 266582
asynchronous call/handle. Also updates the ORC remote JIT API to use the new
scheme.
The previous version of the RPC tools only supported void functions, and
required the user to manually call a paired function to return results. This
patch replaces the Procedure typedef (which only supported void functions) with
the Function typedef which supports return values, e.g.:
Function<FooId, int32_t(std::string)> Foo;
The RPC primitives and channel operations are also expanded. RPC channels must
support four new operations: startSendMessage, endSendMessage,
startRecieveMessage and endRecieveMessage, to handle channel locking. In
addition, serialization support for tuples to RPCChannels is added to enable
multiple return values.
The RPC primitives are expanded from callAppend, call, expect and handle, to:
appendCallAsync - Make an asynchronous call to the given function.
callAsync - The same as appendCallAsync, but calls send on the channel when
done.
callSTHandling - Blocking call for single-threaded code. Wraps a call to
callAsync then waits on the result, using a user-supplied
handler to handle any callbacks from the remote.
callST - The same as callSTHandling, except that it doesn't handle
callbacks - it expects the result to be the first return.
expect and handle - as before.
handleResponse - Handle a response from the remote.
waitForResult - Wait for the response with the given sequence number to arrive.
llvm-svn: 266581
Cache the result of mapping metadata nodes between instances of IRLinker
(i.e., for the lifetime of IRMover). There shouldn't be any real
functional change here, but this should give a major speedup. I had
loaned this to Mehdi when he tested performance of r266446, and the two
patches together gave a 10x speedup in metadata mapping.
llvm-svn: 266579
This catches two nullptr insertions into the ValueMap I missed in
r266567. I missed CloneFunction becuase it never calls RemapInstruction
directly. Here's one of the still-failing bots:
http://lab.llvm.org:8011/builders/clang-x64-ninja-win7/builds/11496
llvm-svn: 266570
Add an assertion to ValueMapper that prevents double-scheduling of
GlobalValues to remap, and fix the one place it happened. There are
tons of tests that fail with this assertion in place and without the
code change, so I'm not adding another.
Although it looks related, r266563 was, indeed, removing dead code.
AFAICT, this cross-file double-scheduling started in r266510 when the
cross-file recursion was removed.
llvm-svn: 266569
Apparently there isn't test coverage for all of these. I'd appreciate
if someone with could reproduce and send me something to reduce, but for
now I've just looked for users of RemapInstruction and MapValue and
ensured they don't accidentally insert nullptr. Here is one of the
bootstraps that caught:
http://lab.llvm.org:8011/builders/clang-x64-ninja-win7/builds/11494
llvm-svn: 266567
As a follow-up to r123058, assert that there are no null mappings in the
ValueMap instead of just ignoring them when they are there. There were
a couple of accidental insertions in CloneFunction so I cleaned those up
(caught by testcases).
llvm-svn: 266565
This required changing several places to print VT enums as strings instead of raw ints since the proper method to use to print became ambiguous. This is probably an improvement anyway.
This also appears to save ~8K from an x86 self host build of llc.
llvm-svn: 266562
template<class T> void f(T) = delete;
template<> void f(int); // OK.
f(3); // OK
Implementation strategy:
When an explicit specialization of a function template, a member function template or a member function of a class template is declared, clang first implicitly instantiates the declaration of a specialization from the templated-entity being explicitly specialized (since their signatures must be the same) and then links the explicit specialization being declared as a redeclaration of the aforementioned specialization.
The problem was that when clang 'implicitly instantiates' the initial specialization, it marks the corresponding FunctionDecl as deleted if the corresponding templated-entity was deleted, rather than waiting to see whether the explicit specialization being declared provides a non-deleted body. (The eager marking of delete has advantages during overload resolution I suppose, where we don't have to try and instantiate a definition of the function to see if it is deleted).
The present fix entails recognizing that when clang knows that an explicit specialization is being declared (for whichever templated-entity), the prior implicit instantiation should not inherit the 'deleted' status, and so we reset it to false.
I suppose an alternative fix (amongst others) could consider creating a new context (ExplicitSpecializationDeclarationSubstitution or some such) that is checked during template-argument-deduction and final substitution, and avoid inheriting the deleted status during declaration substitution. But while conceptually cleaner, that would be a slightly more involved change (as could be some of the other alternatives: such as avoid tagging implicit specializations as deleted, and check their primary templates for the deleted status where needed), and so I chose a different path. Hopefully it'll prove to not be a bad choice.
llvm-svn: 266561
no functional change.
ExtraLoad and WrapperKind are been used only if (OpFlags == X86II::MO_GOTPCREL).
Differential Revision: http://reviews.llvm.org/D18942
llvm-svn: 266557
Since elements of most kinds of DICompositeType have back references,
most are involved in uniquing cycles. Except via the ODR 'identifier:'
field, which doesn't care about the storage type (see r266549),
they have no hope of being uniqued.
Distinct nodes are far more efficient, so use them for most kinds of
DICompositeType definitions (i.e., when DIType::isForwardDecl is false).
The exceptions:
- DW_TAG_array_type, since their elements never have back-references
and they never have ODR 'identifier:' fields;
- DW_TAG_enumeration_type when there is no ODR 'identifier:' field,
since their elements usually don't have back-references.
This breaks the last major uniquing cycle I'm aware of in the debug info
graph. The impact won't be enormous for C++ because references to
ODR-uniqued nodes still use string-based DITypeRefs; but this should
prevent a regression in C++ when we drop the string-based references.
This wouldn't have been reasonable until r266549, when composite types
stopped relying on being uniqued by structural equivalence to prevent
blow-ups at LTO time.
llvm-svn: 266556
There's a hole in the verifier right now: if a module has no compile
units, it never checks that all the string-based DITypeRefs get
resolved. As a result, this testcase didn't fail the verifier, even
there were references to `!"has-uuid"` instead of `!"uuid"` (the former
was a composite type's 'name:' field, the latter its 'identifier:'
field).
I'm currently working on removing string-based type refs entirely, and
this testcase started failing (because the upgrade script can't resolve
the type refs). Rather than fixing the (about-to-be-removed) hole in
the verifier, I'm just going to fix the test so that my upgrade script
handles it.
llvm-svn: 266553
Fix a couple of places in the Verifier that call `getScope()` instead of
`getRawScope()`. Both DIDerivedType::getScope and
DICompositeType::getScope return a DITypeRef right now (which wraps a
Metadata*) so I don't think there's currently an observable bug. I
found this because a future commit that will change them to cast to
DIScope*.
llvm-svn: 266552
I accidentally replaced `mayBeOverridden` with `!isInterposable`.
Remove the negation and add a test case that would've caught this.
Many thanks to Håkan Hjort for spotting this!
llvm-svn: 266551
Rather than relying on the structural equivalence of DICompositeType to
merge type definitions, use an explicit map on the LLVMContext that
LLParser and BitcodeReader consult when constructing new nodes.
Each non-forward-declaration DICompositeType with a non-empty
'identifier:' field is stored/loaded from the type map, and the first
definiton will "win".
This map is opt-in: clients that expect ODR types from different modules
to be merged must call LLVMContext::ensureDITypeMap.
- Clients that just happen to load more than one Module in the same
LLVMContext won't magically merge types.
- Clients (like LTO) that want to continue to merge types based on ODR
identifiers should opt-in immediately.
I have updated LTOCodeGenerator.cpp, the two "linking" spots in
gold-plugin.cpp, and llvm-link (unless -disable-debug-info-type-map) to
set this.
With this in place, it will be straightforward to remove the DITypeRef
concept (i.e., referencing types by their 'identifier:' string rather
than pointing at them directly).
llvm-svn: 266549
Merge members that are describing the same member of the same ODR type,
even if other bits differ. If the file or line differ, we don't care;
if anything else differs, it's an ODR violation (and we still don't
really care).
For DISubprogram declarations, this looks at the LinkageName and Scope.
For DW_TAG_member instances of DIDerivedType, this looks at the Name and
Scope. In both cases, we know that the Scope follows ODR rules if it
has a non-empty identifier.
llvm-svn: 266548