Commit Graph

60 Commits

Author SHA1 Message Date
Shraiysh Vaishay d242aa245c [MLIR] Added llvm.invoke and llvm.landingpad
Summary:
I have tried to implement `llvm.invoke` and `llvm.landingpad`.

  # `llvm.invoke` is similar to `llvm.call` with two successors added, the first one is the normal label and the second one is unwind label.
  # `llvm.launchpad` takes a variable number of args with either `catch` or `filter` associated with them. Catch clauses are not array types and filter clauses are array types. This is same as the criteria used by LLVM (4f82af81a0/llvm/include/llvm/IR/Instructions.h (L2866))

Examples:
LLVM IR
```
define i32 @caller(i32 %a) personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
    invoke i32 @foo(i32 2) to label %success unwind label %fail

  success:
    ret i32 2

  fail:
    landingpad {i8*, i32} catch i8** @_ZTIi catch i8** null catch i8* bitcast (i8** @_ZTIi to i8*) filter [1 x i8] [ i8 1 ]
    ret i32 3
}
```
MLIR LLVM Dialect
```
llvm.func @caller(%arg0: !llvm.i32) -> !llvm.i32 {
  %0 = llvm.mlir.constant(3 : i32) : !llvm.i32
  %1 = llvm.mlir.constant("\01") : !llvm<"[1 x i8]">
  %2 = llvm.mlir.addressof @_ZTIi : !llvm<"i8**">
  %3 = llvm.bitcast %2 : !llvm<"i8**"> to !llvm<"i8*">
  %4 = llvm.mlir.null : !llvm<"i8**">
  %5 = llvm.mlir.addressof @_ZTIi : !llvm<"i8**">
  %6 = llvm.mlir.constant(2 : i32) : !llvm.i32
  %7 = llvm.invoke @foo(%6) to ^bb1 unwind ^bb2 : (!llvm.i32) -> !llvm.i32
^bb1:	// pred: ^bb0
  llvm.return %6 : !llvm.i32
^bb2:	// pred: ^bb0
  %8 = llvm.landingpad (catch %5 : !llvm<"i8**">) (catch %4 : !llvm<"i8**">) (catch %3 : !llvm<"i8*">) (filter %1 : !llvm<"[1 x i8]">) : !llvm<"{ i8*, i32 }">
  llvm.return %0 : !llvm.i32
}
```

Signed-off-by: Shraiysh Vaishay <cs17btech11050@iith.ac.in>

Differential Revision: https://reviews.llvm.org/D72006
2020-01-30 12:55:28 +01:00
Frank Laub fffea2842d [MLIR] LLVM Dialect: add llvm.cmpxchg and improve llvm.atomicrmw custom parser
Summary:
Add a `llvm.cmpxchg` op as a counterpart to LLVM IR's `cmpxchg` instruction.
Note that the `weak`, `volatile`, and `syncscope` attributes are not yet supported.

This will be useful for upcoming parallel versions of affine.for and generally
for reduction-like semantics (especially for reductions that can't make use
of `atomicrmw`, e.g. `fmax`).

Reviewers: ftynse, nicolasvasilache

Reviewed By: ftynse

Subscribers: merge_guards_bot, jfb, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72995
2020-01-21 01:09:42 -08:00
Frank Laub 60a0c612df [MLIR] LLVM dialect: Add llvm.atomicrmw
Summary:
This op is the counterpart to LLVM's atomicrmw instruction. Note that
volatile and syncscope attributes are not yet supported.

This will be useful for upcoming parallel versions of `affine.for` and generally
for reduction-like semantics.

Differential Revision: https://reviews.llvm.org/D72741
2020-01-17 21:17:14 +01:00
Alex Zinenko a4a42160c4 [mlir] support translation of multidimensional vectors to LLVM IR
Summary:
MLIR unlike LLVM IR supports multidimensional vector types. Such types are
lowered to nested LLVM IR arrays wrapping an LLVM IR vector for the innermost
dimension of the MLIR vector. MLIR supports constants of such types using
ElementsAttr for values. Introduce support for converting ElementsAttr into
LLVM IR Constant Aggregates recursively. This enables translation of
multidimensional vector constants from MLIR to LLVM IR.

Differential Revision: https://reviews.llvm.org/D72846
2020-01-17 00:05:37 +01:00
Alex Zinenko d6ea8ff0d7 [mlir] Fix translation of splat constants to LLVM IR
Summary:
When converting splat constants for nested sequential LLVM IR types wrapped in
MLIR, the constant conversion was erroneously assuming it was always possible
to recursively construct a constant of a sequential type given only one value.
Instead, wait until all sequential types are unpacked recursively before
constructing a scalar constant and wrapping it into the surrounding sequential
type.

Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72688
2020-01-14 12:37:47 +01:00
Manuel Freiberger 22954a0e40 Add integer bit-shift operations to the standard dialect.
Rename the 'shlis' operation in the standard dialect to 'shift_left'. Add tests
for this operation (these have been missing so far) and add a lowering to the
'shl' operation in the LLVM dialect.

Add also 'shift_right_signed' (lowered to LLVM's 'ashr') and 'shift_right_unsigned'
(lowered to 'lshr').

The original plan was to name these operations 'shift.left', 'shift.right.signed'
and 'shift.right.unsigned'. This works if the operations are prefixed with 'std.'
in MLIR assembly. Unfortunately during import the short form is ambigous with
operations from a hypothetical 'shift' dialect. The best solution seems to omit
dots in standard operations for now.

Closes tensorflow/mlir#226

PiperOrigin-RevId: 286803388
2019-12-22 10:02:13 -08:00
Alex Zinenko d5e627f84b Introduce Linkage attribute to the LLVM dialect
LLVM IR supports linkage on global objects such as global variables and
functions. Introduce the Linkage attribute into the LLVM dialect, backed by an
integer storage. Use this attribute on LLVM::GlobalOp and make it mandatory.
Implement parsing/printing of the attribute and conversion to LLVM IR.

See tensorflow/mlir#277.

PiperOrigin-RevId: 283309328
2019-12-02 03:28:10 -08:00
MLIR Team 1012c492f0 Allow LLVM::ExtractElementOp to have non-i32 indices.
Also change the text format a bit, so that indices are braced by squares.

PiperOrigin-RevId: 282437095
2019-11-25 14:44:52 -08:00
Eric Schweitz 0d545921ea Add support for the LLVM FNeg instruction
Closes tensorflow/mlir#216

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/216 from schweitzpgi:llvmir-fneg-op f9b5f185845d671b745ab6fc213d5d9aff044b34
PiperOrigin-RevId: 278795325
2019-11-06 00:02:10 -08:00
James Molloy 250a11ae0f [llvm] Allow GlobalOp to take a region for complex initializers
This allows GlobalOp to either take a value attribute (for simple constants) or a region that can
contain IR instructions (that must be constant-foldable) to create a ConstantExpr initializer.

Example:
  // A complex initializer is constructed with an initializer region.
  llvm.mlir.global constant @int_gep() : !llvm<"i32*"> {
    %0 = llvm.mlir.addressof @g2 : !llvm<"i32*">
    %1 = llvm.mlir.constant(2 : i32) : !llvm.i32
    %2 = llvm.getelementptr %0[%1] : (!llvm<"i32*">, !llvm.i32) -> !llvm<"i32*">
    llvm.return %2 : !llvm<"i32*">
  }
PiperOrigin-RevId: 278717836
2019-11-05 15:11:01 -08:00
James Molloy 96531e2f87 [mlir][llvm] Add missing cast ops
Also adds a builder method for fcmp, identical to that for icmp.

PiperOrigin-RevId: 277923158
2019-11-01 07:32:09 -07:00
Alex Zinenko 71b82bcbf6 LLVM Dialect: introduce llvm.mlir.null operation
Similarly to `llvm.mlir.undef`, this auxiliary operation creates an SSA value
that corresponds to `null` in LLVM IR.  This operation is necessary to model
sizeof(<...>) behavior when allocating memory.

PiperOrigin-RevId: 274158760
2019-10-11 06:32:24 -07:00
Alex Zinenko 5e7959a353 Use llvm.func to define functions with wrapped LLVM IR function type
This function-like operation allows one to define functions that have wrapped
LLVM IR function type, in particular variadic functions. The operation was
added in parallel to the existing lowering flow, this commit only switches the
flow to use it.

Using a custom function type makes the LLVM IR dialect type system more
consistent and avoids complex conversion rules for functions that previously
had to use the built-in function type instead of a wrapped LLVM IR dialect type
and perform conversions during the analysis.

PiperOrigin-RevId: 273910855
2019-10-10 01:34:06 -07:00
Christian Sigg f479f816f9 Add integer shift ops to LLVM dialect.
PiperOrigin-RevId: 272140049
2019-09-30 22:56:28 -07:00
Manuel Freiberger 2c11997d48 Add integer sign- and zero-extension and truncation to standard.
This adds sign- and zero-extension and truncation of integer types to the
standard dialects. This allows to perform integer type conversions without
having to go to the LLVM dialect and introduce custom type casts (between
standard and LLVM integer types).

Closes tensorflow/mlir#134

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/134 from ombre5733:sext-zext-trunc-in-std c7657bc84c0ca66b304e53ec03797e09152e4d31
PiperOrigin-RevId: 270479722
2019-09-21 16:14:56 -07:00
Christian Sigg 33a3a91ba2 Make GlobalOp's value attribute optional.
Make GlobalOp's value attribute an OptionalAttr. Change code that uses the value to handle 'nullopt'. Translate an unitialized value attribute to llvm::UndefValue.

PiperOrigin-RevId: 270423646
2019-09-21 01:20:28 -07:00
MLIR Team e79bfefb89 Add address space attribute to LLVMIR's GlobalOp.
PiperOrigin-RevId: 270012505
2019-09-19 04:50:46 -07:00
MLIR Team 2f13df13b0 Add support for array-typed constants.
PiperOrigin-RevId: 267121729
2019-09-04 03:46:06 -07:00
Alex Zinenko c335d9d313 LLVM dialect: prefix auxiliary operations with "mlir."
Some of the operations in the LLVM dialect are required to model the LLVM IR in
MLIR, for example "constant" operations are needed to declare a constant value
since MLIR, unlike LLVM, does not support immediate values as operands.  To
avoid confusion with actual LLVM operations, we prefix such axuiliary
operations with "mlir.".

PiperOrigin-RevId: 266942838
2019-09-03 09:10:56 -07:00
Eric Schweitz 761d57d187 Add FPToSI/FPExt/FPTrunc cast ops to the LLVM dialect.
Closes tensorflow/mlir#99

PiperOrigin-RevId: 265538731
2019-08-26 14:19:19 -07:00
River Riddle d906f84b52 Add iterator support to ElementsAttr and SparseElementsAttr.
This will allow iterating the values of a non-opaque ElementsAttr, with all of the types currently supported by DenseElementsAttr. This should help reduce the amount of specialization on DenseElementsAttr.

PiperOrigin-RevId: 264968151
2019-08-22 18:59:24 -07:00
River Riddle b618221350 Automated rollback of commit b9dc2e4818
PiperOrigin-RevId: 264672975
2019-08-21 13:01:03 -07:00
River Riddle b9dc2e4818 Add iterator support to ElementsAttr and SparseElementsAttr.
This will allow iterating the values of a non-opaque ElementsAttr, with all of the types currently supported by DenseElementsAttr. This should help reduce the amount of specialization on DenseElementsAttr.

PiperOrigin-RevId: 264637293
2019-08-21 10:23:44 -07:00
Nicolas Vasilache c9f37fca37 Add alignment support for llvm.alloca
Extend the LLVM dialect AllocaOp with an alignment attribute.

PiperOrigin-RevId: 264068306
2019-08-18 18:55:14 -07:00
Alex Zinenko 2dd38b09c1 LLVM dialect: introduce llvm.addressof to access globals
This instruction is a local counterpart of llvm.global that takes a symbol
reference to a global and produces an SSA value containing the pointer to it.
Used in combination, these two operations allow one to use globals with other
operations expecting SSA values.  At a cost of IR indirection, we make sure the
functions don't implicitly capture the surrounding SSA values and remain
suitable for parallel processing.

PiperOrigin-RevId: 262908622
2019-08-12 06:10:54 -07:00
Alex Zinenko 68451df267 LLVM dialect and translation: support global strings
Unlike regular constant values, strings must be placed in some memory and
referred to through a pointer to that memory.  Until now, they were not
supported in function-local constant declarations with `llvm.constant`.
Introduce support for global strings using `llvm.global`, which would translate
them into global arrays in LLVM IR and thus make sure they have some memory
allocated for storage.

PiperOrigin-RevId: 262569316
2019-08-09 09:00:13 -07:00
Alex Zinenko b9ff2dd87e Translation to LLVM: support llvm.global
Add support for translating recently introduced llvm.global operations to
global variables in the LLVM IR proper.

PiperOrigin-RevId: 262564700
2019-08-09 08:30:42 -07:00
Nicolas Vasilache 92dc127ab3 Add support for vector ops in the LLVM dialect
This CL is step 1/n towards building a simple, programmable and portable vector abstraction in MLIR that can go all the way down to generating assembly vector code via LLVM's opt and llc tools.

This CL adds the 3 instructions `llvm.extractelement`, `llvm.insertelement` and `llvm.shufflevector` as documented in the LLVM LangRef "Vector Instructions" section.

The "Experimental Vector Reduction Intrinsics" are left out for now and can be added in the future on a per-need basis.

Appropriate roundtrip and LLVM Target tests are added.

PiperOrigin-RevId: 262542095
2019-08-09 05:25:31 -07:00
Nagy Mostafa 48fdc8d7a3 Add support for floating-point comparison 'fcmp' to the LLVM dialect.
This adds support for fcmp to the LLVM dialect and adds any necessary lowerings, as well as support for EDSCs.

Closes tensorflow/mlir#69

PiperOrigin-RevId: 262475255
2019-08-08 18:29:48 -07:00
Eric Schweitz 881b238d7e Add the LLVM IR unreachable instruction to the LLVMIR dialect.
http://llvm.org/docs/LangRef.html#unreachable-instruction

Closes tensorflow/mlir#64

PiperOrigin-RevId: 262301557
2019-08-08 01:06:00 -07:00
Denis Khalikov b36e3be3fc [mlir-translate] Fix test suite.
llvm ir printer was changed at LLVM r367755.
Prints value numbers for unnamed functions argument.

Closes tensorflow/mlir#67

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/67 from denis0x0D:sandbox/fix_mlir_translate ae46844e66f34a02e0cf86782ddadc5bce58b30d
PiperOrigin-RevId: 261640048
2019-08-05 01:39:55 -07:00
River Riddle 679a3b4191 Change the attribute dictionary syntax to separate name and value with '='.
The current syntax separates the name and value with ':', but ':' is already overloaded by several other things(e.g. trailing types). This makes the syntax difficult to parse in some situtations:

Old:
  "foo: 10 : i32"

New:
  "foo = 10 : i32"
PiperOrigin-RevId: 255097928
2019-06-25 19:06:34 -07:00
River Riddle 4842b2d42e Modify the syntax of the the ElementsAttrs to print the type as a colon type.
This is the standard syntax for types on operations, and is also already used by IntegerAttr and FloatAttr.

Example:
  dense<5> : tensor<i32>
  dense<[3]> : tensor<1xi32>
PiperOrigin-RevId: 255069157
2019-06-25 16:06:58 -07:00
River Riddle 6a0555a875 Refactor SplatElementsAttr to inherit from DenseElementsAttr as opposed to being a separate Attribute type. DenseElementsAttr provides a better internal representation for splat values as well as better API for accessing elements.
PiperOrigin-RevId: 253138287
2019-06-19 23:01:52 -07:00
Stephan Herhut cb348dff8a Add support for llvm.constant with StringAttr as value.
These are translated to an llvm::ConstantDataArray on translation to llvm IR
    proper.

--

PiperOrigin-RevId: 249813111
2019-06-01 19:59:54 -07:00
Stephan Herhut b52112275d Add LLVM::IntToPtrOp and LLVM::PtrToIntOp to LLVM dialect.
--

PiperOrigin-RevId: 249604199
2019-06-01 19:57:34 -07:00
River Riddle c33862b0ed Refactor FunctionAttr to hold the internal function reference by name instead of pointer. The one downside to this is that the function reference held by a FunctionAttr needs to be explicitly looked up from the parent module. This provides several benefits though:
* There is no longer a need to explicitly remap function attrs.
      - This removes a potentially expensive call from the destructor of Function.
      - This will enable some interprocedural transformations to now run intraprocedurally.
      - This wasn't scalable and forces dialect defined attributes to override
        a virtual function.
    * Replacing a function is now a trivial operation.
    * This is a necessary first step to representing functions as operations.

--

PiperOrigin-RevId: 249510802
2019-06-01 19:56:54 -07:00
Stephan Herhut d6037276af Add conversion of StandardOps and, or and xor to LLVM dialect.
--

PiperOrigin-RevId: 242831203
2019-04-11 10:52:02 -07:00
Mehdi Amini 7286d43920 Introduce std.varargs attribute to mark variadic arguments functions
This is only teaching the LLVM converter to propagate the attribute onto
    the function type. MLIR will not recognize this arguments, so it would only
    be useful when calling for example `printf` with the same arguments across
    a module. Since varargs is part of the ABI lowering, this is not NFC.

--

PiperOrigin-RevId: 242382427
2019-04-07 18:22:56 -07:00
Chris Lattner 72441fcbf2 Change the asmprinter to use pretty syntax for dialect types when it can,
making the IR dumps much nicer.

    This is part 2/3 of the path to making dialect types more nice.  Part 3/3 will
    slightly generalize the set of characters allowed in pretty types and make it
    more principled.

--

PiperOrigin-RevId: 242249955
2019-04-07 18:21:13 -07:00
Alex Zinenko 736bef7386 Introduce custom format for the LLVM IR Dialect
Historically, the LLVM IR dialect has been using the generic form of MLIR
    operation syntax.  It is verbose and often redundant.  Introduce the custom
    printing and parsing for all existing operations in the LLVM IR dialect.
    Update the relevant documentation and tests.

--

PiperOrigin-RevId: 241617393
2019-04-02 16:31:58 -07:00
River Riddle fdef161592 Remove "<label>" from the llvm basic block CHECK names.
PiperOrigin-RevId: 239898185
2019-03-29 17:32:06 -07:00
Dimitrios Vytiniotis 480cc2b063 Using llvm.noalias attribute when generating LLVMIR.
PiperOrigin-RevId: 237063104
2019-03-29 17:01:11 -07:00
Alex Zinenko 8cc50208a6 LLVM IR Dialect: unify call and call0 operations
When the LLVM IR dialect was implemented, TableGen operation definition scheme
did not support operations with variadic results.  Therefore, the `call`
instruction was split into `call` and `call0` for the single- and zero-result
calls (LLVM does not support multi-result operations).  Unify `call` and
`call0` using the recently added TableGen support for operations with Variadic
results.  Explicitly verify that the new operation has 0 or 1 results.  As a
side effect, this change enables clean-ups in the conversion to the LLVM IR
dialect that no longer needs to rely on wrapped LLVM IR void types when
constructing zero-result calls.

PiperOrigin-RevId: 236119197
2019-03-29 16:49:59 -07:00
Alex Zinenko 1da1b4c321 LLVM IR dialect and translation: support conditional branches with arguments
Since the goal of the LLVM IR dialect is to reflect LLVM IR in MLIR, the
dialect and the conversion procedure must account for the differences betweeen
block arguments and LLVM IR PHI nodes. In particular, LLVM IR disallows PHI
nodes with different values coming from the same source. Therefore, the LLVM IR
dialect now disallows `cond_br` operations that have identical successors
accepting arguments, which would lead to invalid PHI nodes. The conversion
process resolves the potential PHI source ambiguity by injecting dummy blocks
if the same block is used more than once as a successor in an instruction.
These dummy blocks branch unconditionally to the original successors, pass them
the original operands (available in the dummy block because it is dominated by
the original block) and are used instead of them in the original terminator
operation.

PiperOrigin-RevId: 235682798
2019-03-29 16:43:05 -07:00
Alex Zinenko c98a87cc06 Lower standard DivF and RemF operations to the LLVM IR dialect
Add support for lowering DivF and RemF to LLVM::FDiv and LLMV::FRem
respectively.  The lowering is a trivial one-to-one transformation.
The corresponding operations already existed in the LLVM IR dialect and can be
lowered to the LLVM IR proper.  Add the necessary tests for scalar and vector
forms.

PiperOrigin-RevId: 234984608
2019-03-29 16:36:56 -07:00
Alex Zinenko ffc9043604 LLVM dialect conversion and target: support indirect calls
Add support for converting MLIR `call_indirect` instructions to the LLVM IR
dialect.  In LLVM IR, the same instruction is used for direct and indirect
calls.  In the dialect, we have `llvm.call` and `llvm.call0` to work around the
absence of the void type in MLIR.  For direct calls, the callee is stored as
instruction attribute.  Use the same pair of instructions for indirect calls by
omitting the callee attribute.  In the MLIR to LLVM IR translator, check the
presence of attribute to decide whether to construct a direct or an indirect
call using different LLVM IR Builder functions.

Add support for converting constants of function type to the LLVM IR dialect
and for translating them to the LLVM IR proper.  The `llvm.constant` operation
works similarly to other types: its attribute has MLIR function type but the
value it produces has LLVM IR function type wrapped in the dialect type.  While
lowering, look up the pointer to the converted function in the corresponding
mapping.

PiperOrigin-RevId: 234132351
2019-03-29 16:28:56 -07:00
Alex Zinenko 50700b8122 Reimplement LLVM IR translation to use the MLIR LLVM IR dialect
Original implementation of the translation from MLIR to LLVM IR operated on the
Standard+BuiltIn dialect, with a later addition of the SuperVector dialect.
This required the translation to be aware of a potetially large number of other
dialects as the infrastructure extended.  With the recent introduction of the
LLVM IR dialect into MLIR, the translation can be switched to only translate
the LLVM IR dialect, and the translation of the operations becomes largely
mechanical.

The reimplementation of the translator follows the lines of the original
translator in function and basic block conversion.  In particular, block
arguments are converted to LLVM IR PHI nodes, which are connected to their
sources after all blocks of a function had been converted.  Thanks to LLVM IR
types being wrapped in the MLIR LLVM dialect type, type conversion is
simplified to only convert function types, all other types are simply
unwrapped.  Individual instructions are constructed using the LLVM IRBuilder,
which has a great potential for being table-generated from the LLVM IR dialect
operation definitions.

The input of the test/Target/llvmir.mlir is updated to use the MLIR LLVM IR
dialect.  While it is now redundant with the dialect conversion test, the point
of the exercise is to guarantee exactly the same LLVM IR is emitted.  (Only the
name of the allocation function is changed from `__mlir_alloc` to `alloc` in
the CHECK lines.)  It will be simplified in a follow-up commit.

PiperOrigin-RevId: 233842306
2019-03-29 16:27:10 -07:00
Alex Zinenko caa7e70627 LLVM IR lowering: support integer division and remainder operations
These operations trivially map to LLVM IR counterparts for operands of scalar
and (one-dimensional) vector type.  Multi-dimensional vector and tensor type
operands would fail type conversion before the operation conversion takes
place.  Add tests for scalar and vector cases.  Also add a test for vector
`select` instruction for consistency with other tests.

PiperOrigin-RevId: 228077564
2019-03-29 14:59:07 -07:00
Chris Lattner bbf362b784 Eliminate extfunc/cfgfunc/mlfunc as a concept, and just use 'func' instead.
The entire compiler now looks at structural properties of the function (e.g.
does it have one block, does it contain an if/for stmt, etc) so the only thing
holding up this difference is round tripping through the parser/printer syntax.
Removing this shrinks the compile by ~140LOC.

This is step 31/n towards merging instructions and statements.  The last step
is updating the docs, which I will do as a separate patch in order to split it
from this mostly mechanical patch.

PiperOrigin-RevId: 227540453
2019-03-29 14:51:37 -07:00