Summary:
The intrinsic operation added multiple type annotations to the llvm intrinsic operations, but only one is needed.
The related tests in llvmir-intrinsics.mlir checked the wrong number and are adjusted as well.
Reviewers: nicolasvasilache, ftynse
Reviewed By: ftynse
Subscribers: merge_guards_bot, ftynse, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73470
Summary:
Implement the handling of llvm::ConstantDataSequential and
llvm::ConstantAggregate for (nested) array and vector types when imporitng LLVM
IR to MLIR. In all cases, the result is a DenseElementsAttr that can be used in
either a `llvm.mlir.global` or a `llvm.mlir.constant`. Nested aggregates are
unpacked recursively until an element or a constant data is found. Nested
arrays with innermost scalar type are represented as DenseElementsAttr of
tensor type. Nested arrays with innermost vector type are represented as
DenseElementsAttr with (multidimensional) vector type.
Constant aggregates of struct type are not yet supported as the LLVM dialect
does not have a well-defined way of modeling struct-type constants.
Differential Revision: https://reviews.llvm.org/D72834
Summary:
Add a `llvm.cmpxchg` op as a counterpart to LLVM IR's `cmpxchg` instruction.
Note that the `weak`, `volatile`, and `syncscope` attributes are not yet supported.
This will be useful for upcoming parallel versions of affine.for and generally
for reduction-like semantics (especially for reductions that can't make use
of `atomicrmw`, e.g. `fmax`).
Reviewers: ftynse, nicolasvasilache
Reviewed By: ftynse
Subscribers: merge_guards_bot, jfb, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72995
Summary:
This op is the counterpart to LLVM's atomicrmw instruction. Note that
volatile and syncscope attributes are not yet supported.
This will be useful for upcoming parallel versions of `affine.for` and generally
for reduction-like semantics.
Differential Revision: https://reviews.llvm.org/D72741
Summary:
MLIR unlike LLVM IR supports multidimensional vector types. Such types are
lowered to nested LLVM IR arrays wrapping an LLVM IR vector for the innermost
dimension of the MLIR vector. MLIR supports constants of such types using
ElementsAttr for values. Introduce support for converting ElementsAttr into
LLVM IR Constant Aggregates recursively. This enables translation of
multidimensional vector constants from MLIR to LLVM IR.
Differential Revision: https://reviews.llvm.org/D72846
The current implementation of the LLVM-to-MLIR translation could not handle
functions used as constant values in instructions. The handling is added
trivially as `llvm.mlir.constant` can define constants of function type using
SymbolRef attributes, which works even for functions that have not been
declared yet.
Summary:
When converting splat constants for nested sequential LLVM IR types wrapped in
MLIR, the constant conversion was erroneously assuming it was always possible
to recursively construct a constant of a sequential type given only one value.
Instead, wait until all sequential types are unpacked recursively before
constructing a scalar constant and wrapping it into the surrounding sequential
type.
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72688
Summary:
`mlir-translate -import-llvm test.ll` was going into segmentation fault if `test.ll` had `float` or `double` constants.
For example,
```
%3 = fadd double 3.030000e+01, %0
```
Now, it is handled in `Importer::getConstantAsAttr` (similar behaviour as normal integers)
Added tests for FP arithmetic
Reviewers: ftynse, mehdi_amini
Reviewed By: ftynse, mehdi_amini
Subscribers: shauheen, mehdi_amini, rriddle, jpienaar, burmako, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71912
Rename the 'shlis' operation in the standard dialect to 'shift_left'. Add tests
for this operation (these have been missing so far) and add a lowering to the
'shl' operation in the LLVM dialect.
Add also 'shift_right_signed' (lowered to LLVM's 'ashr') and 'shift_right_unsigned'
(lowered to 'lshr').
The original plan was to name these operations 'shift.left', 'shift.right.signed'
and 'shift.right.unsigned'. This works if the operations are prefixed with 'std.'
in MLIR assembly. Unfortunately during import the short form is ambigous with
operations from a hypothetical 'shift' dialect. The best solution seems to omit
dots in standard operations for now.
Closestensorflow/mlir#226
PiperOrigin-RevId: 286803388
Added test cases for the newly added LLVM operations and lowering features.
Closestensorflow/mlir#300
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/300 from dfki-jugr:std_to_llvm da6168bbc1a369ae2e99ad3881fdddd82f075dd4
PiperOrigin-RevId: 286231169
Introduce affine.prefetch: op to prefetch using a multi-dimensional
subscript on a memref; similar to affine.load but has no effect on
semantics, but only on performance.
Provide lowering through std.prefetch, llvm.prefetch and map to llvm's
prefetch instrinsic. All attributes reflected through the lowering -
locality hint, rw, and instr/data cache.
affine.prefetch %0[%i, %j + 5], false, 3, true : memref<400x400xi32>
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#225
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/225 from bondhugula:prefetch 4c3b4e93bc64d9a5719504e6d6e1657818a2ead0
PiperOrigin-RevId: 286212997
Both work for the current use case, but the latter allows implementing
prefix sums and is a little easier to understand for partial warps.
PiperOrigin-RevId: 285145287
LLVM IR supports linkage on global objects such as global variables and
functions. Introduce the Linkage attribute into the LLVM dialect, backed by an
integer storage. Use this attribute on LLVM::GlobalOp and make it mandatory.
Implement parsing/printing of the attribute and conversion to LLVM IR.
See tensorflow/mlir#277.
PiperOrigin-RevId: 283309328
MLIR translation tools can emit diagnostics and we want to be able to check if
it is indeed the case in tests. Reuse the source manager error handlers
provided for mlir-opt to support the verification in mlir-translate. This
requires us to change the signature of the functions that are registered to
translate sources to MLIR: it now takes a source manager instead of a memory
buffer.
PiperOrigin-RevId: 279132972
This allows GlobalOp to either take a value attribute (for simple constants) or a region that can
contain IR instructions (that must be constant-foldable) to create a ConstantExpr initializer.
Example:
// A complex initializer is constructed with an initializer region.
llvm.mlir.global constant @int_gep() : !llvm<"i32*"> {
%0 = llvm.mlir.addressof @g2 : !llvm<"i32*">
%1 = llvm.mlir.constant(2 : i32) : !llvm.i32
%2 = llvm.getelementptr %0[%1] : (!llvm<"i32*">, !llvm.i32) -> !llvm<"i32*">
llvm.return %2 : !llvm<"i32*">
}
PiperOrigin-RevId: 278717836
This adds an importer from LLVM IR or bitcode to the LLVM dialect. The importer is registered with mlir-translate.
Known issues exposed by this patch but not yet fixed:
* Globals' initializers are attributes, which makes it impossible to represent a ConstantExpr. This will be fixed in a followup.
* icmp returns i32 rather than i1.
* select and a couple of other instructions aren't implemented.
* llvm.cond_br takes its successors in a weird order.
The testing here is known to be non-exhaustive.
I'd appreciate feedback on where this functionality should live. It looks like the translator *from MLIR to LLVM* lives in Target/, but the SPIR-V deserializer lives in Dialect/ which is why I've put this here too.
PiperOrigin-RevId: 278711683
nvvm.shfl.sync.bfly optionally returns a predicate whether source lane was active. Support for this was added to clang in https://reviews.llvm.org/D68892.
Add an optional 'pred' unit attribute to the instruction to return this predicate. Specify this attribute in the partial warp reduction so we don't need to manually compute the predicate.
PiperOrigin-RevId: 275616564
Similarly to `llvm.mlir.undef`, this auxiliary operation creates an SSA value
that corresponds to `null` in LLVM IR. This operation is necessary to model
sizeof(<...>) behavior when allocating memory.
PiperOrigin-RevId: 274158760
This function-like operation allows one to define functions that have wrapped
LLVM IR function type, in particular variadic functions. The operation was
added in parallel to the existing lowering flow, this commit only switches the
flow to use it.
Using a custom function type makes the LLVM IR dialect type system more
consistent and avoids complex conversion rules for functions that previously
had to use the built-in function type instead of a wrapped LLVM IR dialect type
and perform conversions during the analysis.
PiperOrigin-RevId: 273910855
This is matching what the runtime library is expecting.
Closestensorflow/mlir#171
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/171 from deven-amd:deven-rocdl-device-func-i64 80762629a8c34e844ebdc542b34dd783990db9db
PiperOrigin-RevId: 273640767
This commit introduces the ROCDL Dialect (i.e. the ROCDL ops + the code to lower those ROCDL ops to LLWM intrinsics/functions). Think of ROCDL Dialect as analogous to the NVVM Dialect, but for AMD GPUs. This patch contains just the essentials needed to get a simple example up and running. We expect to make further additions to the ROCDL Dialect.
This is the first of 3 commits, the follow-up will be:
* add a pass that lowers GPU Dialect to ROCDL Dialect
* add a "mlir-rocm-runner" utility
Closestensorflow/mlir#146
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/146 from deven-amd:deven-rocdl-dialect e78e8005c75a78912631116c78dc844fcc4b0de9
PiperOrigin-RevId: 271511259
This adds sign- and zero-extension and truncation of integer types to the
standard dialects. This allows to perform integer type conversions without
having to go to the LLVM dialect and introduce custom type casts (between
standard and LLVM integer types).
Closestensorflow/mlir#134
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/134 from ombre5733:sext-zext-trunc-in-std c7657bc84c0ca66b304e53ec03797e09152e4d31
PiperOrigin-RevId: 270479722
Make GlobalOp's value attribute an OptionalAttr. Change code that uses the value to handle 'nullopt'. Translate an unitialized value attribute to llvm::UndefValue.
PiperOrigin-RevId: 270423646
Some of the operations in the LLVM dialect are required to model the LLVM IR in
MLIR, for example "constant" operations are needed to declare a constant value
since MLIR, unlike LLVM, does not support immediate values as operands. To
avoid confusion with actual LLVM operations, we prefix such axuiliary
operations with "mlir.".
PiperOrigin-RevId: 266942838
This will allow iterating the values of a non-opaque ElementsAttr, with all of the types currently supported by DenseElementsAttr. This should help reduce the amount of specialization on DenseElementsAttr.
PiperOrigin-RevId: 264968151
This will allow iterating the values of a non-opaque ElementsAttr, with all of the types currently supported by DenseElementsAttr. This should help reduce the amount of specialization on DenseElementsAttr.
PiperOrigin-RevId: 264637293
LLVM intrinsics have an open name space and their names can potentially overlap
with names of LLVM instructions (LLVM intrinsics are functions, not
instructions). In MLIR, LLVM intrinsics are modeled as operations, so it needs
to make sure their names cannot clash with the instructions. Use the "intr."
prefix for intrinsics in the LLVM dialect.
PiperOrigin-RevId: 264372173
This operation is important to achieve decent performance in computational
kernels. In LLVM, it is implemented as an intrinsic (through function
declaration and function call). Thanks to MLIR's extendable set of operations,
it does not have to differentiate between built-ins and intrinsics, so fmuladd
is introduced as a general type-polymorphic operation. Custom printing and
parsing will be added later.
PiperOrigin-RevId: 263106305
This instruction is a local counterpart of llvm.global that takes a symbol
reference to a global and produces an SSA value containing the pointer to it.
Used in combination, these two operations allow one to use globals with other
operations expecting SSA values. At a cost of IR indirection, we make sure the
functions don't implicitly capture the surrounding SSA values and remain
suitable for parallel processing.
PiperOrigin-RevId: 262908622
Unlike regular constant values, strings must be placed in some memory and
referred to through a pointer to that memory. Until now, they were not
supported in function-local constant declarations with `llvm.constant`.
Introduce support for global strings using `llvm.global`, which would translate
them into global arrays in LLVM IR and thus make sure they have some memory
allocated for storage.
PiperOrigin-RevId: 262569316
This CL is step 1/n towards building a simple, programmable and portable vector abstraction in MLIR that can go all the way down to generating assembly vector code via LLVM's opt and llc tools.
This CL adds the 3 instructions `llvm.extractelement`, `llvm.insertelement` and `llvm.shufflevector` as documented in the LLVM LangRef "Vector Instructions" section.
The "Experimental Vector Reduction Intrinsics" are left out for now and can be added in the future on a per-need basis.
Appropriate roundtrip and LLVM Target tests are added.
PiperOrigin-RevId: 262542095
This adds support for fcmp to the LLVM dialect and adds any necessary lowerings, as well as support for EDSCs.
Closestensorflow/mlir#69
PiperOrigin-RevId: 262475255