addressing code. On 403.gcc this almost halves CodeGenPrepare time and reduces
total llc time by 9.5%. Unfortunately, getNumUses() is still the hottest function
in llc.
llvm-svn: 126782
The basic issue is that isel (very reasonably!) expects conditional branches
to be folded, so CGP leaving around a bunch dead computation feeding
conditional branches isn't such a good idea. Just fold branches on constants
into unconditional branches.
llvm-svn: 123526
have objectsize folding recursively simplify away their result when it
folds. It is important to catch this here, because otherwise we won't
eliminate the cross-block values at isel and other times.
llvm-svn: 123524
they all ready do). This removes two dominator recomputations prior to isel,
which is a 1% improvement in total llc time for 403.gcc.
The only potentially suspect thing is making GCStrategy recompute dominators if
it used a custom lowering strategy.
llvm-svn: 123064
capacity on the Visited SmallPtrSet. On 403.gcc, this is about a 4.5% speedup of
CodeGenPrepare time (which itself is 10% of time spent in the backend).
This is progress towards PR8889.
llvm-svn: 122741
pipeline to be caught by instcombine, and it's not feasible to catch them in SimplifyCFG because the
use-lists are in an inconsistent state at the point where it could know that it need to simplify them.
Instead, have CodeGenPrepare look for trivially redundant PHIs as part of its general cleanup effort.
llvm-svn: 122516
which have trapping constant exprs in them due to PHI nodes.
Eliminating them can cause the constant expr to be evalutated
on new paths if the input edges are critical.
llvm-svn: 122164
by my recent GVN improvement. Looking through a single layer of
PHI nodes when attempting to sink GEPs, we need to iteratively
look through arbitrary PHI nests.
llvm-svn: 120202
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
llvm-svn: 116820
This reverts revision 114633. It was breaking llvm-gcc-i386-linux-selfhost.
It seems there is a downstream bug that is exposed by
-cgp-critical-edge-splitting=0. When that bug is fixed, this patch can go back
in.
Note that the changes to tailcallfp2.ll are not reverted. They were good are
required.
llvm-svn: 114859
truncates are free only in the case where the extended type is legal but the
load type is not. If both types are illegal, such as when they are too big,
the load may not be legalized into an extended load.
llvm-svn: 114568
load when the type of the load is not legal, even if truncates are not free.
The load is going to be legalized to an extending load anyway.
llvm-svn: 114488
walking the asm arguments once and stashing their Values. This is
wrong because the same memory location can be in the list twice, and
if the first one has a sunkaddr substituted, the stashed value for the
second one will be wrong (use-after-free). PR 8154.
llvm-svn: 114104
for an "i" constraint should get lowered; PR 6309. While
this argument was passed around a lot, this is the only
place it was used, so it goes away from a lot of other
places.
llvm-svn: 106893
with a fix for self-hosting
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101465
generate wrong code pretty much anywhere AFAICT.
A case that hits the bug reproducibly is impossible,
but the situation was like this:
Addr = ...
Store -> Addr
Addr2 = GEP , 0, 0
Store -> Addr2
Handling the first store, the code changed replaced Addr
with a sunkaddr and deleted Addr, but not its table
entry. Code in OptimizedBlock replaced Addr2 with a
bitcast; if that happened to reuse the memory of Addr,
the old table entry was erroneously found when handling
the second store.
llvm-svn: 100044