callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
Without this patch, APSInt inherits APInt::isNegative, which merely
checks the sign bit without regard to whether the type is actually
signed. isNonNegative and isStrictlyPositive call isNegative and so
are also affected.
This patch adjusts APSInt to override isNegative, isNonNegative, and
isStrictlyPositive with implementations that consider whether the type
is signed.
A large set of Clang OpenMP tests are affected. Without this patch,
these tests assume that `true` is not a valid argument for clauses
like `collapse`. Indeed, `true` fails APInt::isStrictlyPositive but
not APSInt::isStrictlyPositive. This patch adjusts those tests to
assume `true` should be accepted.
This patch also adds tests revealing various other similar fixes due
to APSInt::isNegative calls in Clang's ExprConstant.cpp and
SemaExpr.cpp: `++` and `--` overflow in `constexpr`, evaluated object
size based on `alloc_size`, `<<` and `>>` shift count validation, and
OpenMP array section validation.
Reviewed By: lebedev.ri, ABataev, hfinkel
Differential Revision: https://reviews.llvm.org/D59712
llvm-svn: 359012
only.
Added support for -fopenmp-simd option that allows compilation of
simd-based constructs without emission of OpenMP runtime calls.
llvm-svn: 321560
This reverts commit r279003 as it breaks some of our buildbots (e.g.
clang-cmake-aarch64-quick, clang-x86_64-linux-selfhost-modules).
The error is in OpenMP/teams_distribute_simd_ast_print.cpp:
clang: /home/buildslave/buildslave/clang-cmake-aarch64-quick/llvm/include/llvm/ADT/DenseMap.h:527:
bool llvm::DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT>::LookupBucketFor(const LookupKeyT&, const BucketT*&) const
[with LookupKeyT = clang::Stmt*; DerivedT = llvm::DenseMap<clang::Stmt*, long unsigned int>;
KeyT = clang::Stmt*; ValueT = long unsigned int;
KeyInfoT = llvm::DenseMapInfo<clang::Stmt*>;
BucketT = llvm::detail::DenseMapPair<clang::Stmt*, long unsigned int>]:
Assertion `!KeyInfoT::isEqual(Val, EmptyKey) && !KeyInfoT::isEqual(Val, TombstoneKey) &&
"Empty/Tombstone value shouldn't be inserted into map!"' failed.
llvm-svn: 279045
This patch is to implement sema and parsing for 'teams distribute simd’ pragma.
This patch is originated by Carlo Bertolli.
Differential Revision: https://reviews.llvm.org/D23528
llvm-svn: 279003