There are two nontrivial details here:
* Loop structure update interface is quite different with new pass manager,
so the code to add new loops was factored out
* BranchProbabilityInfo is not a loop analysis, so it can not be just getResult'ed from
within the loop pass. It cant even be queried through getCachedResult as LoopCanonicalization
sequence (e.g. LoopSimplify) might invalidate BPI results.
Complete solution for BPI will likely take some time to discuss and figure out,
so for now this was partially solved by making BPI optional in IRCE
(skipping a couple of profitability checks if it is absent).
Most of the IRCE tests got their corresponding new-pass-manager variant enabled.
Only two of them depend on BPI, both marked with TODO, to be turned on when BPI
starts being available for loop passes.
Reviewers: chandlerc, mkazantsev, sanjoy, asbirlea
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D43795
llvm-svn: 327619
IRCE for unsigned latch conditions was temporarily disabled by rL314881. The motivating
example contained an unsigned latch condition and a signed range check. One of the safe
iteration ranges was `[1, SINT_MAX + 1]`. Its right border was incorrectly interpreted as a negative
value in `IntersectRange` function, this lead to a miscompile under which we deleted a range check
without inserting a postloop where it was needed.
This patch brings back IRCE for unsigned latch conditions. Now we treat range intersection more
carefully. If the latch condition was unsigned, we only try to consider a range check for deletion if:
1. The range check is also unsigned, or
2. Safe iteration range of the range check lies within `[0, SINT_MAX]`.
The same is done for signed latch.
Values from `[0, SINT_MAX]` are unambiguous, these values are non-negative under any interpretation,
and all values of a range intersected with such range are also non-negative.
We also use signed/unsigned min/max functions for range intersection depending on type of the
latch condition.
Differential Revision: https://reviews.llvm.org/D38581
llvm-svn: 316552
For a SCEV range, this patch replaces the naive emptiness check for SCEV ranges
which looks like `Begin == End` with a SCEV check. The range is guaranteed to be
empty of `Begin >= End`. We should filter such ranges out and do not try to perform
IRCE for them.
For example, we can get such range when intersecting range `[A, B)` and `[C, D)`
where `A < B < C < D`. The resulting range is `[max(A, C), min(B, D)) = [C, B)`.
This range is empty, but its `Begin` does not match with `End`.
Making IRCE for an empty range is basically safe but unprofitable because we
never actually get into the main loop where the range checks are supposed to
be eliminated. This patch uses SCEV mechanisms to treat loops with proved
`Begin >= End` as empty.
Differential Revision: https://reviews.llvm.org/D39082
llvm-svn: 316550