Fix SmallPtrSet::iterator behaviour and creation ReverseIterate is true.
- Any function that creates an iterator now uses
SmallPtrSet::makeIterator, which creates an iterator that
dereferences to the given pointer.
- In reverse-iterate mode, initialze iterator::End with "CurArray"
instead of EndPointer.
- In reverse-iterate mode, the current node is iterator::Buffer[-1].
iterator::operator* and SmallPtrSet::makeIterator are the only ones
that need to know.
- Fix the assertions for reverse-iterate mode.
This fixes the tests Danny B added in r297182, and adds a couple of
others to confirm that dereferencing does the right thing, regardless of
how the iterator was found, and that iteration works correctly from each
return from find.
llvm-svn: 297234
This extends an earlier change that did similar for add and sub operations.
With this first patch we lose the fastpath for the single word case as operator&= and friends don't support it. This can be added there if we think that's important.
I had to change some functions in the APInt class since the operator overloads were moved out of the class and can't be used inside the class now. The getBitsSet change collides with another outstanding patch to implement it with setBits. But I didn't want to make this patch dependent on that series.
I've also removed the Or, And, Xor functions which were rarely or never used. I already commited two changes to remove the only uses of Or that existed.
Differential Revision: https://reviews.llvm.org/D30612
llvm-svn: 297121
We currently have methods to set a specified number of low bits, a specified number of high bits, or a range of bits. But looking at some existing code it seems sometimes we want to set the high bits starting from a certain bit. Currently we do this with something like getHighBits(BitWidth, BitWidth - StartBit). Or once we start switching to setHighBits, setHighBits(BitWidth - StartBit) or setHighBits(getBitWidth() - StartBit).
Particularly for the latter case it would be better to have a convenience method like setBitsFrom(StartBit) so we don't need to mention the bit width that's already known to the APInt object.
I considered just making setBits have a default value of UINT_MAX for the hiBit argument and we would internally MIN it with the bit width. So if it wasn't specified it would be treated as bit width. This would require removing the assertion we currently have on the value of hiBit and may not be as readable.
Differential Revision: https://reviews.llvm.org/D30602
llvm-svn: 297114
This patch implements getLowBitsSet/getHighBitsSet/getBitsSet in terms of the new setLowBits/setHighBits/setBits methods by making an all 0s APInt and then calling the appropriate set method.
This also adds support to setBits to allow loBits/hiBits to be in the other order to match with getBitsSet behavior.
Differential Revision: https://reviews.llvm.org/D30563
llvm-svn: 297112
Summary:
There are quite a few places in the code base that do something like the following to set the high or low bits in an APInt.
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
For BitWidths larger than 64 this creates a short lived APInt with malloced storage. I think it might even call malloc twice. Its better to just provide methods that can set the necessary bits without the temporary APInt.
I'll update usages that benefit in a separate patch.
Reviewers: majnemer, MatzeB, davide, RKSimon, hans
Reviewed By: hans
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30525
llvm-svn: 297111
Summary:
This makes operator~ take the APInt by value so if it came from a temporary APInt the move constructor will get invoked and it will be able to reuse the memory allocation from the temporary.
This is similar to what was already done for 2s complement negation.
Reviewers: hans, davide, RKSimon
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30614
llvm-svn: 296997
The current pattern for extract bits in range is typically:
Mask.lshr(BitOffset).trunc(SubSizeInBits);
Which can be particularly slow for large APInts (MaskSizeInBits > 64) as they require the allocation of memory for the temporary variable.
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::extractBits() helper method which avoids the temporary memory allocation.
Differential Revision: https://reviews.llvm.org/D30336
llvm-svn: 296272
The current pattern for extract bits in range is typically:
Mask.lshr(BitOffset).trunc(SubSizeInBits);
Which can be particularly slow for large APInts (MaskSizeInBits > 64) as they require the allocation of memory for the temporary variable.
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::extractBits() helper method which avoids the temporary memory allocation.
Differential Revision: https://reviews.llvm.org/D30336
llvm-svn: 296147
The current pattern for extract bits in range is typically:
Mask.lshr(BitOffset).trunc(SubSizeInBits);
Which can be particularly slow for large APInts (MaskSizeInBits > 64) as they require the allocation of memory for the temporary variable.
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::extractBits() helper method which avoids the temporary memory allocation.
Differential Revision: https://reviews.llvm.org/D30336
llvm-svn: 296141
The current pattern for setting bits in range is typically:
Mask |= APInt::getBitsSet(MaskSizeInBits, LoPos, HiPos);
Which can be particularly slow for large APInts (MaskSizeInBits > 64) as they require the allocation memory for the temporary variable.
This is one of the key compile time issues identified in PR32037.
This patch adds the APInt::setBits() helper method which avoids the temporary memory allocation completely, this first implementation uses setBit() internally instead but already significantly reduces the regression in PR32037 (~10% drop). Additional optimization may be possible.
I investigated whether there is need for APInt::clearBits() and APInt::flipBits() equivalents but haven't seen these patterns to be particularly common, but reusing the code would be trivial.
Differential Revision: https://reviews.llvm.org/D30265
llvm-svn: 296102
This commit provides `zip_{first,shortest}` with the standard member types and
methods expected of iterators (e.g., `difference_type`), in order for zip to be
used with other adaptors, such as `make_filter_range`.
Support for reverse iteration has also been added.
Differential Revision: https://reviews.llvm.org/D30246
llvm-svn: 296036
Add explicit conversions between forward and reverse ilist iterators.
These follow the conversion conventions of std::reverse_iterator, which
are off-by-one: the newly-constructed "reverse" iterator dereferences to
the previous node of the one sent in. This has the benefit of
converting reverse ranges in place:
- If [I, E) is a valid range,
- then [reverse(E), reverse(I)) gives the same range in reverse order.
ilist_iterator::getReverse() is unchanged: it returns a reverse iterator
to the *same* node.
llvm-svn: 294349
Summary: As per title. I ran into that limitation of the API doing some other work, so I though that'd be a nice addition.
Reviewers: jroelofs, compnerd, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29503
llvm-svn: 294063
Summary:
This seemed to be an oversight seeing as DenseMap has these conversions.
This patch does the following:
- Adds a default constructor to the iterators.
- Allows DenseSet::ConstIterators to be copy constructed from DenseSet::Iterators
- Allows mutual comparison between Iterators and ConstIterators.
All of these are available in the DenseMap implementation, so the implementation here is trivial.
Reviewers: dblaikie, dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28999
llvm-svn: 292879
Summary:
There's a comment in XorSlowCase that says "0^0==1" which isn't true. 0 xored with 0 is still 0. So I don't think we need to clear any unused bits here.
Now there is no difference between XorSlowCase and AndSlowCase/OrSlowCase other than the operation being performed
Reviewers: majnemer, MatzeB, chandlerc, bkramer
Reviewed By: MatzeB
Subscribers: chfast, llvm-commits
Differential Revision: https://reviews.llvm.org/D28986
llvm-svn: 292873
Summary:
This patch changes the layout of DoubleAPFloat, and adjust all
operations to do either:
1) (IEEEdouble, IEEEdouble) -> (uint64_t, uint64_t) -> PPCDoubleDoubleImpl,
then run the old algorithm.
2) Do the right thing directly.
1) includes multiply, divide, remainder, mod, fusedMultiplyAdd, roundToIntegral,
convertFromString, next, convertToInteger, convertFromAPInt,
convertFromSignExtendedInteger, convertFromZeroExtendedInteger,
convertToHexString, toString, getExactInverse.
2) includes makeZero, makeLargest, makeSmallest, makeSmallestNormalized,
compare, bitwiseIsEqual, bitcastToAPInt, isDenormal, isSmallest,
isLargest, isInteger, ilogb, scalbn, frexp, hash_value, Profile.
I could split this into two patches, e.g. use
1) for all operatoins first, then incrementally change some of them to
2). I didn't do that, because 1) involves code that converts data between
PPCDoubleDoubleImpl and (IEEEdouble, IEEEdouble) back and forth, and may
pessimize the compiler. Instead, I find easy functions and use
approach 2) for them directly.
Next step is to implement move multiply and divide from 1) to 2). I don't
have plans for other functions in 1).
Differential Revision: https://reviews.llvm.org/D27872
llvm-svn: 292839
This just removes the usage of llvm::reverse and llvm::seq. That makes
it harder to handle the empty case correctly and so I've also added
a test there.
This is just a shot in the dark at what might be behind the buildbot
failures. I can't reproduce any issues locally including with ASan...
I feel like I'm missing something...
llvm-svn: 290954
This is both convenient and more efficient as we can skip any
intermediate reallocation of the vector.
This usage pattern came up in a subsequent patch on the pass manager,
but it seems generically useful so I factored it out and added unittests
here.
llvm-svn: 290952
The bug was introduced in r289619.
Reviewers: Mehdi Amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28134
llvm-svn: 290749
Summary:
This class is unnecessary.
Its comment indicated that it was a compile error to allocate an
instance of a class that inherits from RefCountedBaseVPTR on the stack.
This may have been true at one point, but it's not today.
Moreover you really do not want to allocate *any* refcounted object on
the stack, vptrs or not, so if we did have a way to prevent these
objects from being stack-allocated, we'd want to apply it to regular
RefCountedBase too, obviating the need for a separate RefCountedBaseVPTR
class.
It seems that the main way RefCountedBaseVPTR provides safety is by
making its subclass's destructor virtual. This may have been helpful at
one point, but these days clang will emit an error if you define a class
with virtual functions that inherits from RefCountedBase but doesn't
have a virtual destructor.
Reviewers: compnerd, dblaikie
Subscribers: cfe-commits, klimek, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D28162
llvm-svn: 290717
This recommits r290512 that was reverted when MSVC failed to compile it. Since
then I've played with various approaches using rextester.com (where I was able
to reproduce the failure) and think that I have a solution thanks in part to
the help of Dave Blaikie! It seems MSVC just has a defective `decltype` in this
version. Manually writing out the type seems to do the trick, even though it is
.... quite complicated.
Original commit message:
This allows both defining convenience iterator/range accessors on types
which walk across N different independent ranges within the object, and
more direct and simple usages with range based for loops such as shown
in the unittest. The same facilities are used for both. They end up
quite small and simple as it happens.
I've also switched an iterator on `Module` to use this. I would like to
add another convenience iterator that includes even more sequences as
part of it and seeing this one already present motivated me to actually
abstract it away and introduce a general utility.
Differential Revision: https://reviews.llvm.org/D28093
llvm-svn: 290528
This code doesn't work on MSVC for reasons that elude me and I've not
yet covinced a workaround to compile cleanly so reverting for now while
I play with it.
llvm-svn: 290513
This allows both defining convenience iterator/range accessors on types
which walk across N different independent ranges within the object, and
more direct and simple usages with range based for loops such as shown
in the unittest. The same facilities are used for both. They end up
quite small and simple as it happens.
I've also switched an iterator on `Module` to use this. I would like to
add another convenience iterator that includes even more sequences as
part of it and seeing this one already present motivated me to actually
abstract it away and introduce a general utility.
Differential Revision: https://reviews.llvm.org/D28093
llvm-svn: 290512
unittests/ADT/TwineTest.cpp:106:38: error: field 'Count' will be initialized after base 'llvm::FormatAdapter<int>' [-Werror,-Wreorder]
explicit formatter(int &Count) : Count(Count), FormatAdapter(0) {}
llvm-svn: 290029
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
Summary:
Given a flag (-mllvm -reverse-iterate) this patch will enable iteration of SmallPtrSet in reverse order.
The idea is to compile the same source with and without this flag and expect the code to not change.
If there is a difference in codegen then it would mean that the codegen is sensitive to the iteration order of SmallPtrSet.
This is enabled only with LLVM_ENABLE_ABI_BREAKING_CHECKS.
Reviewers: chandlerc, dexonsmith, mehdi_amini
Subscribers: mgorny, emaste, llvm-commits
Differential Revision: https://reviews.llvm.org/D26718
llvm-svn: 289619
StringLiteral is a wrapper around a string literal useful for
replacing global tables of char arrays with global tables of
StringRefs that can initialized in a constexpr context, avoiding
the invocation of a global constructor.
Differential Revision: https://reviews.llvm.org/D27686
llvm-svn: 289551
Summary:
I looked at libgcc's implementation (which is based on the paper,
Software for Doubled-Precision Floating-Point Computations", by Seppo Linnainmaa,
ACM TOMS vol 7 no 3, September 1981, pages 272-283.) and made it generic to
arbitrary IEEE floats.
Differential Revision: https://reviews.llvm.org/D26817
llvm-svn: 289472
Summary:
Fixes PR30869.
In D25977 I meant to change all functions that care about lifetime. I
changed constructors, factory functions, but I missed member/free
functions that return new instances. This patch changes them.
Reviewers: hfinkel, kbarton, echristo, joerg
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D26269
llvm-svn: 286060
Summary:
These functions currently require that the new closed interval has a length of
at least 2. They also currently permit empty half-open intervals. This patch
defines nonEmpty in each traits structure and uses it to correct the
implementations of setStart and setStop.
Reviewers: stoklund, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26064
llvm-svn: 285957
This augments the STLExtras toolset with a zip iterator and range
adapter. Zip comes in two varieties: `zip`, which will zip to the
shortest of the input ranges, and `zip_first`, which limits its
`begin() == end()` checks to just the first range.
Recommit r284035 after MSVC2013 support has been dropped.
Patch by: Bryant Wong <github.com/bryant>
Differential Revision: https://reviews.llvm.org/D23252
llvm-svn: 284623
This augments the STLExtras toolset with a zip iterator and range
adapter. Zip comes in two varieties: `zip`, which will zip to the
shortest of the input ranges, and `zip_first`, which limits its
`begin() == end()` checks to just the first krange.
Patch by: Bryant Wong <github.com/bryant>
Differential Revision: https://reviews.llvm.org/D23252
llvm-svn: 284035
This re-applies r283798, disabled in r283803, with the static_assert
tests disabled under MSVC. The deleted functions still seem to catch
mistakes in MSVC, so it's not a significant loss.
Part of rdar://problem/16375365
llvm-svn: 283935
This reverts commit r283798, as it causes static asserts on
MSVC 2015 with the following errors:
ArrayRefTest.cpp(38): error C2338: Assigning from single prvalue element
ArrayRefTest.cpp(41): error C2338: Assigning from single xvalue element
ArrayRefTest.cpp(47): error C2338: Assigning from an initializer list
llvm-svn: 283803
llvm::cl already has a function called llvm::apply() so this is
causing an ODR violation. The STLExtras version should win the
vote on which one gets to be called apply() since it is named
after the equivalent STL function, but since renaiming the cl
version is more difficult, let's do this for now to get the
bots green.
llvm-svn: 283800
Without this, the following statements will create ArrayRefs that
refer to temporary storage that goes out of scope by the end of the
line:
someArrayRef = getSingleElement();
someArrayRef = {elem1, elem2};
Note that the constructor still has this problem:
ArrayRef<Element> someArrayRef = getSingleElement();
ArrayRef<Element> someArrayRef = {elem1, elem2};
but that's a little harder to get rid of because we want to be able to
use this in calls:
takesArrayRef(getSingleElement());
takesArrayRef({elem1, elem2});
Part of rdar://problem/16375365. Reviewed by Duncan Exon Smith.
llvm-svn: 283798
This is equivalent to the C++14 std::apply(). Since we are not
using C++14 yet, this allows us to still make use of apply anyway.
Differential revision: https://reviews.llvm.org/D25100
llvm-svn: 283779
Summary: The keys must still be copyable, because we store two copies of them.
Reviewers: timshen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25404
llvm-svn: 283764
Summary: This makes a change to the state used to maintain visited information for depth first iterator. We know assume a method "completed(...)" which is called after all children of a node have been visited. In all existing cases, this method does nothing so this patch has no functional changes. It will however allow a client to distinguish back from cross edges in a DFS tree.
Reviewers: nadav, mehdi_amini, dberlin
Subscribers: MatzeB, mzolotukhin, twoh, freik, llvm-commits
Differential Revision: https://reviews.llvm.org/D25191
llvm-svn: 283391
This allows you to enumerate over a range using a range-based
for while the return type contains the index of the enumeration.
Differential revision: https://reviews.llvm.org/D25124
llvm-svn: 283337
This adds support for CaseLower, CasesLower, StartsWithLower, and
EndsWithLower.
Differential revision: https://reviews.llvm.org/D24686
llvm-svn: 283244
The CL was originally failing due to the use of some C++14
specific features, so I've removed those. Hopefully this will
satisfy the bots.
llvm-svn: 282867
enumerate allows you to iterate over a range by pairing the
iterator's value with its index in the enumeration. This gives
you most of the benefits of using a for loop while still allowing
the range syntax.
llvm-svn: 282804
llvm::join_items is similar to llvm::join, which produces a string
by concatenating a sequence of values together separated by a
given separator. But it differs in that the arguments to
llvm::join() are same-type members of a container, whereas the
arguments to llvm::join_items are arbitrary types passed into
a variadic template. The only requirement on parameters to
llvm::join_items (including for the separator themselves) is
that they be implicitly convertible to std::string or have
an overload of std::string::operator+
Differential Revision: https://reviews.llvm.org/D24880
llvm-svn: 282502
This adds 4 new functions to StringRef, which can be used to
take or drop characters while a certain condition is met, or
until a certain condition is met. They are:
take_while - Return characters until a condition is not met.
take_until - Return characters until a condition is met.
drop_while - Remove characters until a condition is not met.
drop_until - Remove characters until a condition is met.
Internally, all of these functions delegate to two additional
helper functions which can be used to search for the position
of a character meeting or not meeting a condition, which are:
find_if - Find the first character matching a predicate.
find_if_not - Find the first character not matching a predicate.
Differential Revision: https://reviews.llvm.org/D24842
llvm-svn: 282346
Summary:
For AMDGPU, we have been using the operating system component of the triple
for specifying the low-level runtime that is being used. The rationale for
this is that the host operating system (e.g. Linux) is irrelevant for GPU code,
since its execution enviroment will be mostly controled by the low-level runtime
being used to execute the code.
In most cases, higher level languages have their own runtime which is
implemented on top of the low-level runtime. The kernel ABIs of each
language mostly depend on the low-level runtime, but there may be some
slight differences between languages. OpenCL for example, may append
additional arguments to the kernel in order to pass values like global
offsets or buffers for printf. OpenMP, HCC, or other languages may want
to add their own values which differ from OpenCL.
The reason for adding a new opencl environment type is to make it possible for the backend
to distinguish between the ABIs of the higher-level languages and handle them correctly.
It seems cleaner to use the enviroment component for this rather than creating a new
OS type for every combination of low-level runtime / high-level language.
Reviewers: Anastasia, chandlerc
Subscribers: whchung, pekka.jaaskelainen, wdng, yaxunl, llvm-commits
Differential Revision: https://reviews.llvm.org/D24735
llvm-svn: 282218