as part of the hash rather than ignoring them. This means we'll end up
building more module variants (overall), but it allows configuration
macros such as NDEBUG to work so long as they're specified via command
line. More to come in this space.
llvm-svn: 142187
formatting as any other diagnostic, they will be properly line wrapped and
otherwise pretty printed. Let's take advantage of that and the new factoring to
add some helpful information to them (much like template backtrace notes and
other notes): the name of the macro whose expansion is being noted. This makes
a world of difference if caret diagnostics are disabled, making the expansion
notes actually useful in this case. It also helps ensure that in edge cases the
information the user needs is present. Consider:
% nl -ba t5.cc
1 #define M(x, y, z) \
2 y
3
4 M(
5 1,
6 2,
7 3);
We now produce:
% ./bin/clang -fsyntax-only t5.cc
t5.cc:6:3: error: expected unqualified-id
2,
^
t5.cc:2:3: note: expanded from macro: M
y
^
1 error generated.
Without the added information in the note, the name of the macro being expanded
would never be shown.
This also deletes a FIXME to use the diagnostic formatting. It's not yet clear
to me that we *can* do this reasonably, and the production of this message was
my primary goal here anyways.
I'd love any comments or suggestions on improving these notes, their wording,
etc. Currently, I need to make them provide more helpful information in the
presence of a token-pasting buffer, and I'm pondering adding something along
the lines of "expanded from argument N of macro: ...".
llvm-svn: 142127
this long quest: actually use the note printing machinery for each macro
expansion note rather than a hacky version of it. This will colorize and
format the notes the same as any other. There is still some stuff to fix
here, but it's one step closer.
No test case changes because currently we don't do anything differently
that I can FileCheck for -- I don't really want to try matching the
color escape codes... Suggestions for how to test this are welcome. =]
llvm-svn: 142121
standing deficiency: we were providing no macro backtrace information
whenever caret diagnostics were turned off. This sinks the logic for
suppressing the code snippet and caret to the code that actually prints
tho code snippet and caret. Along the way, clean up the naming of
functions, remove some now fixed FIXMEs, and generally improve the
wording and logic of this process.
Add a test case exerecising this functionality. It is notable that the
resulting messages are extremely low quality. I'm working on a follow-up
patch that should address this and have left a FIXME in the test case.
llvm-svn: 142120
the SourceManager doesn't change, and the source files don't change.
This greatly simplifies the interfaces and interactions. The lifetime of
the TextDiagnostic object forms the 'session' over which we attempt to
condense and deduplicate information in diagnostics.
llvm-svn: 142104
been there. Also delete their redundant doxyments in favor of those in
the source file. I'm putting the doxyments for private and static
helpers into the implementation file, and only the public interface
doxyments into the header. If folks have strong opinions about this type
of split, feel free to chime in, I'm happy to re-organize.
llvm-svn: 142087
making it accessible to anyone from the Frontend library. Still a good
bit of cleanup to do here, but its a good milestone. This ensures that
*all* of the functionality needed to implement the DiagnosticConsumer is
exposed via the generic interface in some form. No sneaky re-use of
static functions.
llvm-svn: 142086
diagnostics to control suppression of redundant information. It now
follows the same model as all the other state, and has a bit more clear
semantics.
This is making the duality of the state a bit annoying, and I've added
a FIXME to resolve it. The problem is that I need to lift the
TextDiagnostic up into an externally visible layer before that can
happen.
llvm-svn: 142083
TextDiagnosticPrinter argument to the TextDiagnostic helper class. This
cements the proper ordering of things: TextDiagnostic is now a viable
stand-alone class for emitting pretty-printed textual diagnostics to
a terminal.
llvm-svn: 142070
utility. This is a particularly nice win because it removes a pile of
parameters from these routines. Also name them a bit better. I'm trying
to follow the pattern of 'emit' routines writing directly to what is
expected to be the final output, while 'print' routines take a output
stream argument and can be used to build up intermediate buffers, etc.
Also, fix a bug I spotted by inspection from my last commit where
'LastLoc' and 'LastNonNoteLoc' were reversed. It's really scary that
this didn't trigger a single test failure. Will be working on tests for
more of this functionality now.
llvm-svn: 142069
across emissions.
1) The include stack printing is conditioned on non-note diagnostics,
not just on warning diagnostics.
2) Those should be full source locations as they're tied to a source
manager.
3) We should pass in the prior state to the TextDiagnostic constructor,
allow it to mutate as diagnostics are emitted, and then cache the
final state before tearing it down.
Some of this remains incomplete, specifically #3 isn't finished for the
non-note location. That'll come when the include stack printing sinks
down a level.
This also highlights how *completely* bug-ridden this code is. For
example, we currently do all these comparisons of a FullSourceLoc and
a SourceLocation... which silently does a SourceLocation to
SourceLocation comparison, completely disregarding the source manager
from whence one of the arguments came. Oops! Good thing in practice this
wasn't important, but it could in theory be suppressing caret
diagnostics in a second TU on a single clang invocation. I'm hoping to
hammer these bugs out as the refactorings occur, although for so many of
them it's really unlikely I can dream up a test case that would show the
potentially buggy behavior.
llvm-svn: 142067
consumer. The TextDiagnostic interface now has a generic entry point for
emitting a diagnostic which uses a minimal interface that should be
compatible with StoredDiagnostics such as are available in libclang etc.
Some unfortunate shuffling of static functions as things get relocated.
Also some unfortunate public interface points added to
TextDiagnosticPrinter, but those are the next bits to get moved so they
won't last long.
llvm-svn: 142064
to operate directly on the source location and ranges associated with
a diagnostic rather than digging them out of the diagnostic. This had
a side benefit of cleaning up its code a tiny bit by using the ArrayRef
interface.
No functionality changed.
llvm-svn: 142063
Also note that it is actually doing much more than it should. This paves
the way for building a more generic 'Emit' routine that is the real
entry point here.
llvm-svn: 142035
creation, so that only a single Clang instance will rebuild a given
module at once (and the others will wait).
We still don't clean up the lock files when we crash, which is a
rather unfortunate problem. I'll handle that next, and there is
certainly a *lot* of room for further improvements.
llvm-svn: 141179
increasingly prevailing case to the point that new features
like ARC don't even support the fragile ABI anymore.
This required a little bit of reshuffling with exceptions
because a check was assuming that ObjCNonFragileABI was
only being set in ObjC mode, and that's actually a bit
obnoxious to do.
Most, though, it involved a perl script to translate a ton
of test cases.
Mostly no functionality change for driver users, although
there are corner cases with disabling language-specific
exceptions that we should handle more correctly now.
llvm-svn: 140957
- The TextDiagnosticPrinter code is still fragile as it is just "reverse engineering" what the diagnostic engine is doing. Not my current priority to fix though.
llvm-svn: 140752
DiagnosticsEngine::setDiagnosticGroup{ErrorAsFatal,WarningAsError} methods which
more accurately model the correct API -- no internal change to the diagnostics
engine yet though.
- Also, stop honoring -Werror=everything (etc.) as a valid (but oddly behaved) option.
llvm-svn: 140747
we have the ability to create a new, distict diagnostic consumer when
we go off and build a module. This avoids the currently horribleness
where the same diagnostic consumer sees diagnostics for multiple
translation units (and multiple SourceManagers!) causing all sorts of havok.
llvm-svn: 140743
message. Specifically, we now only line-wrap the first line of te
diagnostic message and assume the remainder is manually formatted. While
adding it back, simplify the logic for doing this.
Finally, add a test that ensures we actually preserve this feature. =D
*Now* its not dead code. Thanks to Doug for the test case.
llvm-svn: 140538
when working with a diagnostic attached to a source location. Also
comment more thoroughly why its important to handle non-location
diagnostic messages separately.
Finally, hoist the creation of the TextDiagnostic object up to the
beginning of the location-based diagnostics. This paves the way for
sinking more and more of the logic into this class. When everything
below this constructor is sunk into the TextDiagnostic class it should
be sufficiently "feature complete" to accomplish my two goals:
1) Have the printing of a macro expansion note use the exact same code
as any other note.
2) Be able to implement clang_formatDiagnostic in terms of this class.
llvm-svn: 140526
a dedicated path. The logic for such diagnostics is much simpler than
for others.
This begins to make an important separation in this routine. We expect
most (and most interesting) textual diagnostics to be made in the
presence of at least *some* source locations and a source manager.
However the DiagnosticConsumer must be prepared to diagnose errors even
when the source manager doesn't (yet) exist or when there is no location
information at all. In order to sink more and more logic into the
TextDiagnostic class while minimizing its complexity, my plan is to
force the DiagnosticConsumer to special case diagnosing any locationless
messages and then hand the rest to the TextDiagnostic class. I'd
appreciate any comments on this design. It requires a bit of code
duplication in order to keep interfaces simple. Alternatively, if we
really need TextDiagnostic to be capable of handling diagnostics even in
the absence of a viable SourceManager, then this split isn't necessary.
llvm-svn: 140525
function. Doing this conveniently requires moving the word wrapping to
use a StringRef which seems generally an improvement. There is a lot
that could be simplified in the word wrapping by using StringRef that
I haven't looked at yet...
llvm-svn: 140524
a "loaded" location of the precompiled preamble.
Instead, handle specially locations of preprocessed entities:
-When looking up for preprocessed entities, map main file locations inside the
preamble range to a preamble loaded location.
-When getting the source range of a preprocessing cursor, map preamble loaded
locations back to main file locations.
Fixes rdar://10175093 & http://llvm.org/PR10999
llvm-svn: 140519
characters. I could find no newline character in a diagnostic message,
and adding an assert to this code never fires in the testsuite.
I think this code is essentially dead, and was previously used for
a different purpose. If I just don't understand how it is we can end up
with a newline here please let me know (with a test case?) and I'll
revert.
llvm-svn: 140497
to handle non-caret diagnostics as well in order to be fully useful in
libclang etc. Also sketch out some more of my plans on this refactoring.
llvm-svn: 140476
tracking the start and stop of macro expansion suppression. Also remove
the Columns variable which was just a convenience variable based on
DiagOpts. Instead we materialize it in the one piece of code that cared.
llvm-svn: 140475
TextDiagnosticPrinter into the CaretDiagnostic class. Several
interesting results from this:
- This removes a significant per-diagnostic bit of state from the
CaretDiagnostic class, which should eventually allow us to re-use the
object.
- It removes a redundant recursive walk of the macro expansion stack
just to compute the depth. We don't need the depth until we're
unwinding anyways, so we can just mark when we reach it.
- It also paves the way for several simplifications we can do to how we
implement the suppression.
llvm-svn: 140474
This moves the existing code for CPATH into the driver and adds the environment lookup and path splitting there.
The paths are then passed down to cc1 with -I options (CPATH), added after the normal user-specified include dirs.
Language specific paths are passed via -LANG-isystem and the actual filtering is performed in the frontend.
I tried to match GCC's behavior as close as possible
Fixes PR8971.
llvm-svn: 140341
OpenCL is different from AltiVec in the way it supports vector literals. OpenCL
is strict with regards to semantic checks. For example, implicit conversions
and explicit casts between vectors of different types are disallowed.
Fixes PR10975. Submitted by: Anton Lokhmotov <Anton.lokhmotov@gmail.com>
llvm-svn: 140270
PreprocessingRecord's getPreprocessedEntitiesInRange.
Also remove all the stuff that were added in ASTUnit that are unnecessary now
that we do a binary search for preprocessed entities and deserialize only
what is necessary.
llvm-svn: 140063
check whether the requested location points inside the precompiled preamble,
in which case the returned source location will be a "loaded" one.
llvm-svn: 140060
Microsoft specific tweaking will now fall into 2 categories:
- fms-extension: Microsoft specific extensions that should never change the meaning of an otherwise well formed code. Currently map to LangOptions::Microsoft. (To be clearer, I am planning to change the name to LangOptions::MicrosoftExt).
- fms-compatibility: Really a MSVC emulation mode. Map to LangOptions::MicrosoftMode. Can change the meaning of an otherwise standard conformant program.
llvm-svn: 139978
-Use an array of offsets for all preprocessed entities
-Get rid of the separate array of offsets for just macro definitions;
for references to macro definitions use an index inside the preprocessed
entities array.
-Deserialize each preprocessed entity lazily, at first request; not in bulk.
Paves the way for binary searching of preprocessed entities that will offer
efficiency and will simplify things on the libclang side a lot.
llvm-svn: 139809
target triple to separate modules built under different
conditions. The hash is used to create a subdirectory in the module
cache path where other invocations of the compiler (with the same
version, language options, etc.) can find the precompiled modules.
llvm-svn: 139662
language options. Use that .def file to declare the LangOptions class
and initialize all of its members, eliminating a source of annoying
initialization bugs.
AST serialization changes are next up.
llvm-svn: 139605
already provided. This required a little bit of clean-up in the way
that VerifyDiagnosticsClient managed ownership of its underlying
"primary" client, because now it will no longer always take ownership.
llvm-svn: 139570
but there is a corresponding umbrella header in a framework, build the
module on-the-fly so it can be immediately loaded at the import
statement. This is very much proof-of-concept code, with details to be
fleshed out over time.
llvm-svn: 139558
where the compiler will look for module files. Eliminates the
egregious hack where we looked into the header search paths for
modules.
llvm-svn: 139538
modifying directly for the preamble.
This avoids an awful, hard to find, bug where "PreprocessorOpts.DisablePCHValidation = true"
would be persistent for subsequent reparses of the translation unit which would result
in defines, present in command-line but not in the PCH, being ignored.
Fixes rdar://9615399.
llvm-svn: 139512
feature akin to the ARC runtime checks. Removes a terrible hack where
IR gen needed to find the declarations of those symbols in the translation
unit.
llvm-svn: 139404
function. This is really the beginning of the second phase of
refactorings here. The end goal is to have (roughly) three interfaces:
1) Base class to format a single diagnostic suitable for display on the
console.
2) Extension of the base class which also displays a caret diagnostic
suitable for display on the console.
3) An adaptor that implements the DiagnosticClient by delegating to #1
and/or #2 as appropriate.
Once we have these, things like libclang's formatDiagnostic can use #1
and #2 to provide really well formatted (and consistently formatted!)
textual formatting of diagnostics.
Getting there is going to be quite a bit of shuffling. I'm basically
sketching out where the interface boundaries can be drawn for #1 and #2
within the existing classes. That lets me shuffle with a minimum of fuss
and delta. Once that's done, and any of the related interfaces that need
to change are updated, I'll hoist these into separate headers and
re-implement libclang in terms of their interfaces. Long WIP, but
comments at each step welcome. =D
llvm-svn: 139228
a stack array of a magical size with an assert() that we never
overflowed it. That seems incredibly risky. We also have a very nice API
for bundling up a vector we expect to usually have a small size without
loss of functionality or security if the size is excessive.
The fallout is to remove the last pointer+size parameter pair that are
traced through the recursive caret diagnostic emission.
llvm-svn: 139217
a defined interface. This isn't as nice as the previous one, but should
get better as I push through better data types in all these functions.
Also, I'm hoping to pull some aspects of this out into a common routine
(such as tab expansion).
Again, WIP, comments welcome as I'm going through.
llvm-svn: 139190
The function was only counting lines that included tokens and not empty lines,
but MaxLines (mainly initiated to the line where the code-completion point resides)
is a count of overall lines (even empty ones).
llvm-svn: 139085
Preprocessor, eliminating the constructor that was used by ASTUnit
(which didn't provide an ASTContext or Prepreprocessor). Ensuring that
both objects are non-NULL will simplify module loading (but none of
that is done yet).
llvm-svn: 138986
builtin types (When requested). This is another step toward making
ASTUnit build the ASTContext as needed when loading an AST file,
rather than doing so after the fact. No actual functionality change (yet).
llvm-svn: 138985
and language-specific initialization. Use this to allow ASTUnit to
create a preprocessor object *before* loading the AST file. No actual
functionality change.
llvm-svn: 138983
LangOptions, rather than making distinct copies of
LangOptions. Granted, LangOptions doesn't actually get modified, but
this will eventually make it easier to construct ASTContext and
Preprocessor before we know all of the LangOptions.
llvm-svn: 138959
include guards don't show up as macro definitions in every translation
unit that imports a module. Macro definitions can, however, be
exported with the intentionally-ugly #__export_macro__
directive. Implement this feature by not even bothering to serialize
non-exported macros to a module, because clients of that module need
not (should not) know that these macros even exist.
llvm-svn: 138943
(unsurprisingly) caret diagnostics. This is designed to bring some
organization to the monstrous EmitCaretDiagnostic function, and allow
factoring it more easily and with less mindless parameter passing.
Currently this just lifts the existing function into a method, and
splits off the obviously invariant arguments to be class members. No
functionality is changed, and there are still lots of warts to let
existing code continue functioning as-is. Definitely WIP, more cleanups
to follow.
llvm-svn: 138921
, such as list of forward @class decls, in a DeclGroup
node. Deal with its consequence throught clang. This
is in preparation for more Sema work ahead. // rdar://8843851.
Feel free to reverse if it breaks something important
and I am unavailable.
llvm-svn: 138709
loads the named module. The syntax itself is intentionally hideous and
will be replaced at some later point with something more
palatable. For now, we're focusing on the semantics:
- Module imports are handled first by the preprocessor (to get macro
definitions) and then the same tokens are also handled by the parser
(to get declarations). If both happen (as in normal compilation),
the second one is redundant, because we currently have no way to
hide macros or declarations when loading a module. Chris gets credit
for this mad-but-workable scheme.
- The Preprocessor now holds on to a reference to a module loader,
which is responsible for loading named modules. CompilerInstance is
the only important module loader: it now knows how to create and
wire up an AST reader on demand to actually perform the module load.
- We search for modules in the include path, using the module name
with the suffix ".pcm" (precompiled module) for the file name. This
is a temporary hack; we hope to improve the situation in the
future.
llvm-svn: 138679
from the given source. -emit-module behaves similarly to -emit-pch,
except that Sema is somewhat more strict about the contents of
-emit-module. In the future, there are likely to be more interesting
differences.
llvm-svn: 138595