Many different sections can have the same name, so include the indices of the
sections mentioned in the diagnostic too.
I'm debugging something I can't repro locally, maybe this will help.
llvm-svn: 352428
Previously we were setting it to the GotPlt output section, which is
incorrect on ARM where this section is in .got. In static binaries
this can lead to sh_info being set to -1 (because there is no .got.plt)
which results in various tools rejecting the output file.
Differential Revision: https://reviews.llvm.org/D57274
llvm-svn: 352413
r352366 "[llvm-objdump] - Print LMAs when dumping section headers." changed the format of
llvm-objdump output. We have to update the LLD tests.
llvm-svn: 352372
Summary:
lld discards .gnu.linonce.* sections work around a bug in glibc.
https://sourceware.org/bugzilla/show_bug.cgi?id=20543
Unfortunately, the Linux kernel uses a section named
.gnu.linkonce.this_module to store infomation about kernel modules. The
kernel reads data from this section when loading kernel modules, and
errors if it fails to find this section. The current behavior of lld
discards this section when kernel modules are linked, so kernel modules
linked with lld are unloadable by the linux kernel.
The Linux kernel should use a comdat section instead of .gnu.linkonce.
The minimum version of binutils supported by the kernel supports comdat
sections. The kernel is also not relying on the old linkonce behavior;
it seems to have chosen a name that contains a deprecated GNU feature.
Changing the section name now in the kernel would require all kernel
modules to be recompiled to make use of the new section name. Instead,
rather than discarding .gnu.linkonce.*, let's discard the more specific
section name to continue working around the glibc issue while supporting
linking Linux kernel modules.
Link: https://github.com/ClangBuiltLinux/linux/issues/329
Reviewers: pcc, espindola
Reviewed By: pcc
Subscribers: nathanchance, emaste, arichardson, void, srhines
Differential Revision: https://reviews.llvm.org/D57294
llvm-svn: 352302
I need the comdat selection for PR40094. To keep the patch for that smaller,
I'm adding it here, and as a first application I'm using it to reject
associative comdats referring to earlier associative comdats. Depends on
D56929; together with that all associative comdats referring to other
associative comdats are now rejected.
Differential Revision: https://reviews.llvm.org/D56931
llvm-svn: 352254
PDBs contain several serialized hash tables. In the microsoft-pdb
repo published to support LLVM implementing PDB support, the
provided initializes the bucket count for the TPI and IPI streams
to the maximum size. This occurs in tpi.cpp L33 and tpi.cpp L398.
In the LLVM code for generating PDBs, these streams are created with
minimum number of buckets. This difference makes LLVM generated
PDBs slower for when used for debugging.
Patch by C.J. Hebert
Differential Revision: https://reviews.llvm.org/D56942
llvm-svn: 352117
Previously, we assumed that .rdata is zero-filled, so when writing
an COFF import table, we didn't write anything if the data is zero.
That assumption was wrong because .rdata can be merged with .text.
If .rdata is merged with .text, they are initialized with 0xcc which
is a trap instruction.
This patch removes that assumption from code.
Should be merged to 8.0 branch as this is a regression.
Fixes https://bugs.llvm.org/show_bug.cgi?id=39826
Differential Revision: https://reviews.llvm.org/D57168
llvm-svn: 352082
Guessing that the slashes used in the scripts SECTION command was causing the
windows related failures in the added test.
Original commit message:
Small code model global variable access on PPC64 has a very limited range of
addressing. The instructions the relocations are used on add an offset in the
range [-0x8000, 0x7FFC] to the toc pointer which points to .got +0x8000, giving
an addressable range of [.got, .got + 0xFFFC]. While user code can be recompiled
with medium and large code models when the binary grows too large for small code
model, there are small code model relocations in the crt files and libgcc.a
which are typically shipped with the distros, and the ABI dictates that linkers
must allow linking of relocatable object files using different code models.
To minimze the chance of relocation overflow, any file that contains a small
code model relocation should have its .toc section placed closer to the .got
then any .toc from a file without small code model relocations.
Differential Revision: https://reviews.llvm.org/D56920
llvm-svn: 352071
This does *not* implement full SHT_GROUP semantic, yet it is a simple step forward:
Sections within a group are still considered valid, but they do not behave as
specified by the standard in case of garbage collection.
Differential Revision: https://reviews.llvm.org/D56437
llvm-svn: 352068
Small code model global variable access on PPC64 has a very limited range of
addressing. The instructions the relocations are used on add an offset in the
range [-0x8000, 0x7FFC] to the toc pointer which points to .got +0x8000, giving
an addressable range of [.got, .got + 0xFFFC]. While user code can be recompiled
with medium and large code models when the binary grows too large for small code
model, there are small code model relocations in the crt files and libgcc.a
which are typically shipped with the distros, and the ABI dictates that linkers
must allow linking of relocatable object files using different code models.
To minimze the chance of relocation overflow, any file that contains a small
code model relocation should have its .toc section placed closer to the .got
then any .toc from a file without small code model relocations.
Differential Revision: https://reviews.llvm.org/D56920
llvm-svn: 351978
Currently, if an associative comdat appears after the comdat it's associated
with it's processed immediately, else it's deferred until the end of the object
file. I found this confusing to think about while working on PR40094, so this
makes it so that associated comdats are always processed at the end of the
object file. This seems to be perf-neutral and simpler.
Now there's a natural place to reject the associated comdats referring to later
associated comdats (associated comdats referring to associated comdats is
invalid per COFF spec) that, so reject those. (A later patch will reject
associated comdats referring to earlier comdats.)
Differential Revision: https://reviews.llvm.org/D56929
llvm-svn: 351917
Previously, MemoryBlock automatically extends a requested buffer size to a
multiple of page size because (I believe) doing it was thought to be harmless
and with that you could get more memory (on average 2KiB on 4KiB-page systems)
"for free".
That programming interface turned out to be error-prone. If you request N
bytes, you usually expect that a resulting object returns N for `size()`.
That's not the case for MemoryBlock.
Looks like there is only one place where we take the advantage of
allocating more memory than the requested size. So, with this patch, I
simply removed the automatic size expansion feature from MemoryBlock
and do it on the caller side when needed. MemoryBlock now always
returns a buffer whose size is equal to the requested size.
Differential Revision: https://reviews.llvm.org/D56941
llvm-svn: 351916
I was honestly a bit surprised that we didn't do this before. This
patch is to handle "-" as the stdout so that if you pass `-o -` to
lld, for example, it writes an output to stdout instead of file `-`.
I thought that we might want to handle this at a higher level than
FileOutputBuffer, because if we land this patch, we can no longer
create a file whose name is `-` (there's a workaround though; you can
pass `./-` instead of `-`). However, because raw_fd_ostream already
handles `-` as a special file name, I think it's okay and actually
consistent to handle `-` as a special name in FileOutputBuffer.
Differential Revision: https://reviews.llvm.org/D56940
llvm-svn: 351852
r291284 added a nice mechanism to consistently pass CMake on/off toggles to
lit. This change uses it for LLVM_LIBXML2_ENABLED too (which was added around
the same time and doesn't use the new system yet).
No intended behavior change.
Differential Revision: https://reviews.llvm.org/D56912
llvm-svn: 351614
As a follow on to D56666 (r351186) there is a case when taking the address
of an ifunc when linking -pie that can generate a spurious can't create
dynamic relocation R_AARCH64_ADR_PREL_PG_HI21 against symbol in readonly
segment. Specifically the case is where the ifunc is in the same
translation unit as the address taker, so given -fpie the compiler knows
the ifunc is defined in the executable so it can use a non-got-generating
relocation.
The error message is due to R_AARCH64_PLT_PAGE_PC not being added to
isRelExpr, its non PLT equivalent R_AARCH64_PAGE_PC is already in
isRelExpr.
Differential Revision: https://reviews.llvm.org/D56724
llvm-svn: 351335
By default LLD will generate position independent Thunks when the --pie or
--shared option is used. Reference to absolute addresses is permitted in
other cases. For some embedded systems position independent thunks are
needed for code that executes before the MMU has been set up. The option
--pic-veneer is used by ld.bfd to force position independent thunks.
The patch adds --pic-veneer as the option is needed for the Linux kernel
on Arm.
fixes pr39886
Differential Revision: https://reviews.llvm.org/D55505
llvm-svn: 351326
If .rela.iplt does not exist, we used to emit a corrupt symbol table
that contains two symbols, .rela_iplt_{start,end}, pointing to a
nonexisting section.
This patch fixes the issue by setting section index 0 to the symbols
if .rel.iplt section does not exist.
Differential Revision: https://reviews.llvm.org/D56623
llvm-svn: 351218
r347650 fixed pr38074 for AArch64 for static linking. It added two new
RelExpr instances R_AARCH64_GOT_PAGE_PC_PLT and R_GOT_PLT. These need to be
added to isStaticLinkTimeConstant so that the address of an ifunc can be
taken when building a shared library.
fixes pr40250
Differential Revision: https://reviews.llvm.org/D56666
llvm-svn: 351186
When the range between the source and target of a V7PILongThunk exceeded an
int32 we would trigger a relocation out of range error for the
R_ARM_MOVT_PREL or R_ARM_THM_MOVT_PREL relocation. This case can happen when
linking the linux kernel as it is loaded above 0xf0000000.
There are two parts to the fix.
- Remove the overflow check for R_ARM_MOVT_PREL or R_ARM_THM_MOVT_PREL. The
ELF for the ARM Architecture document defines these relocations as having no
overflow checking so the check was spurious.
- Use int64_t for the offset calculation, in line with similar thunks so
that PC + (S - P) < 32-bits. This results in less surprising disassembly.
Differential Revision: https://reviews.llvm.org/D56396
llvm-svn: 350836
The section and offset can be very helpful in diagnosing certian errors.
For example on a relocation overflow or misalignment diagnostic:
test.c:(function foo): relocation R_PPC64_ADDR16_DS out of range: ...
The function foo can have many R_PPC64_ADDR16_DS relocations. Adding the offset
and section will identify exactly which relocation is causing the failure.
Differential Revision: https://reviews.llvm.org/D56453
llvm-svn: 350828
In the PPC64 target we map toc-relative relocations, dynamic thread pointer
relative relocations, and got relocations into a corresponding ADDR16 relocation
type for handling in relocateOne. This patch saves the orignal RelType before
mapping to an ADDR16 relocation so that any diagnostic messages will not
mistakenly use the mapped type.
Differential Revision: https://reviews.llvm.org/D56448
llvm-svn: 350827
Patch by Michael Skvortsov!
This change adds a basic support for linking static MSP430 ELF code.
Implemented relocation types are intended to correspond to the BFD.
Differential revision: https://reviews.llvm.org/D56535
llvm-svn: 350819
ARM and AArch64 use TLS variant 1, where the first two words after the
thread pointer are reserved for the TCB, followed by the executable's TLS
segment. Both the thread pointer and the TLS segment are aligned to at
least the TLS segment's alignment.
Android/Bionic historically has not supported ELF TLS, and it has
allocated memory after the thread pointer for several Bionic TLS slots
(currently 9 but soon only 8). At least one of these allocations
(TLS_SLOT_STACK_GUARD == 5) is widespread throughout Android/AArch64
binaries and can't be changed.
To reconcile this disagreement about TLS memory layout, set the minimum
alignment for executable TLS segments to 8 words on ARM/AArch64, which
reserves at least 8 words of memory after the TP (2 for the ABI-specified
TCB and 6 for alignment padding). For simplicity, and because lld doesn't
know when it's targeting Android, increase the alignment regardless of
operating system.
Differential Revision: https://reviews.llvm.org/D53906
llvm-svn: 350681
llvm-readobj currently has a bug (see PR40097) where it prints '@' at
the end of unversioned dynamic symbols. This bug will be fixed in a
separate later commit, but these tests need fixing first.
Reviewed by: ruiu, Higuoxing
Differential Revision: https://reviews.llvm.org/D56388
llvm-svn: 350614
Fixes https://bugs.llvm.org/show_bug.cgi?id=40134
addWrappedSymbols() must be called before addReservedSymbols() because the
latter only defines reserved symbols when they are undefined in the symbol
table. If addWrappedSymbols() is called after, then addUndefined() is called
which may lazily pull in more object files that could reference reserved
symbols.
Differential Revision: https://reviews.llvm.org/D56110
llvm-svn: 350251
Summary:
If a DSO appears more than once with and without --as-needed, ld.bfd and gold consider --no-as-needed to takes precedence over --as-needed. lld didn't and this patch makes it do so.
This makes it a bit away from the position-dependent behavior (how
different occurrences of the same DSO interact) and protects us from
some mysterious runtime errors: if some interceptor libraries add their
own --no-as-needed dependencies (e.g. librt.so), and the user
application specifies -Wl,--as-needed -lrt , the absence of the
DT_NEEDED entry would make dlsym(RTLD_NEXT, "clock_gettime") return NULL
and would break at runtime.
Reviewers: ruiu, espindola
Reviewed By: ruiu
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D56089
llvm-svn: 350105
Summary:
For unknown reasons LLD tests are flaky on the NetBSD buildbot,
but not on local machines of developers.
Unless the linker will be fully functional on this target,
allow to pass flaky tests with optional retry.
Reviewers: joerg, mgorny, ruiu
Reviewed By: mgorny
Subscribers: lebedev.ri, MaskRay, llvm-commits, #lld
Tags: #lld
Differential Revision: https://reviews.llvm.org/D56053
llvm-svn: 350036
There was a bug in LLVM's libDebugInfo where it did not porpagate the
section index through the range query built from low_pc/high_pc. Hard to
test in LLVM, so I'm adding a test here.
llvm-svn: 350011