Different object formats represent references from dwarf in different ways.
ELF uses a relocation to the referenced point (except for .dwo) and
COFF/MachO use the offset of the referenced point inside its section.
This patch renames emitSectionOffset because
* It doesn't produce an offset on ELF.
* It changes behavior depending on how DWARF is represented, so adding
dwarf to its name is probably a good thing.
The patch also adds an option to force the use of offsets.That avoids
funny looking code like
if (!UseOffsets)
Asm->emitSectionOffset....
It was correct, but read as if the ! was inverted.
llvm-svn: 239866
This patch enables support for the conversion of v2i32 to v2f64 to use the CVTDQ2PD xmm instruction and stay on the SSE unit instead of scalarizing, sign extending to i64 and using CVTSI2SDQ scalar conversions.
Differential Revision: http://reviews.llvm.org/D10433
llvm-svn: 239855
The original change broke clang side tests. I will be submitting those momentarily. This change includes post commit feedback on the original change from from Pete Cooper.
Original Submission comments:
If a parameter to a function is known non-null, use the existing parameter attributes to record that fact at the call site. This has no optimization benefit by itself - that I know of - but is an enabling change for http://reviews.llvm.org/D9129.
Differential Revision: http://reviews.llvm.org/D9132
llvm-svn: 239849
Before this patch the bitcode reader would read a module from a file
that contained in order:
* Any number of non MODULE_BLOCK sub blocks.
* One MODULE_BLOCK
* Any number of non MODULE_BLOCK sub blocks.
* 4 '\n' characters to handle OS X's ranlib.
Since we support lazy reading of modules, any information that is relevant
for the module has to be in the MODULE_BLOCK or before it. We don't gain
anything from checking what is after.
This patch then changes the reader to stop once the MODULE_BLOCK has been
successfully parsed.
This avoids the ugly special case for .bc files in an archive and makes it
easier to embed bitcode files.
llvm-svn: 239845
Summary:
When propagating mass through irregular loops, the mass flowing through
each loop header may not be equal. This was causing wrong frequencies
to be computed for irregular loop headers.
Fixed by keeping track of masses flowing through each of the headers in
an irregular loop. To do this, we now keep track of per-header backedge
weights. After the loop mass is distributed through the loop, the
backedge weights are used to re-distribute the loop mass to the loop
headers.
Since each backedge will have a mass proportional to the different
branch weights, the loop headers will end up with a more approximate
weight distribution (as opposed to the current distribution that assumes
that every loop header is the same).
Reviewers: dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10348
llvm-svn: 239843
While completely undefined registers are easy to catch and get their
<undef> flag early in ProcessImplicitDefs/RegisterCoalescer reading from
a partially defined register where just the subreg happens to be
undefined is harder to catch so we only add the undef flag in the
virtual register rewriting step.
No testcase as I cannot reproduce the problem on any of the in-tree targets at
the moment.
This fixes rdar://21387089
Differential Revision: http://reviews.llvm.org/D10470
llvm-svn: 239838
LaneMasks as given by getSubRegIndexLaneMask() have a limited number of
of bits, so for targets with more than 31 disjunct subregister there may
be cases where:
getSubReg(Reg,A) does not overlap getSubReg(Reg,B)
but we still have
(getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B)) != 0.
I had hoped to keep this an implementation detail of the tablegen but as
my next commit shows we can avoid unnecessary imp-defs operands if we
know that the lane masks in use are precise.
This is in preparation to http://reviews.llvm.org/D10470.
llvm-svn: 239837
Old names, new names, and what they really mean:
- IsWin64 -> IsWin64CC: This is true on non-Windows x86_64 platforms
when the ms_abi calling convention is used.
- IsWinEH -> IsWin64Prologue: True when the target is Win64, regardless
of calling convention. Changes the prologue to obey the constraints of
the Win64 unwinder.
- NeedsWinEH -> NeedsWinCFI: We're using the win64 prologue *and* the we
want .xdata unwind tables. Analogous to NeedsDwarfCFI.
NFC
llvm-svn: 239836
A reduction is a special kind of recurrence. In the loop vectorizer we currently
identify basic reductions. Future patches will extend this to identifying basic
recurrences.
llvm-svn: 239835
This commit reports an error when a machine function from a MIR file that contains
LLVM IR can't find a function with the same name in the loaded LLVM IR module.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10468
llvm-svn: 239831
This is an updated version of the patch that was checked in at:
http://reviews.llvm.org/rL237046
but subsequently reverted because it exposed a bug in the DAG Combiner:
http://reviews.llvm.org/D9893
This time, there's an enablement flag ("EnableFMFInDAG") around the code in
SelectionDAGBuilder where we copy the set of FP optimization flags from IR
instructions to DAG nodes. So, in theory, there should be no functional change
from this patch as-is, but it will allow testing with the added functionality
to proceed via "-enable-fmf-dag" passed to llc.
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
Differential Revision: http://reviews.llvm.org/D10403
llvm-svn: 239828
The mftb instruction was incorrectly marked as deprecated in the PPC
Backend. Instead, it should not be treated as deprecated, but rather be
implemented using the mfspr instruction. A similar patch was put into GCC last
year. Details can be found at:
https://sourceware.org/ml/binutils/2014-11/msg00383.html.
This change will replace instances of the mftb instruction with the mfspr
instruction for all CPUs except 601 and pwr3. This will also be the default
behaviour.
Additional details can be found in:
https://llvm.org/bugs/show_bug.cgi?id=23680
Phabricator review: http://reviews.llvm.org/D10419
llvm-svn: 239827
Reapply r239539. Don't assume the collected number of
stores is the same vector size. Just take the first N
stores to fill the vector.
llvm-svn: 239825
Any combination of +-inf/+-inf is NaN so it's already ignored with
nnan and we can skip checking for ninf. Also rephrase logic in comments
a bit.
llvm-svn: 239821
Summary:
Relocs that can be converted from absolute to PC-relative now do so if IsPCRel
is true. Relocs that require PC-relative now call llvm_unreachable() if IsPCRel
is false and similarly those that require absolute assert that IsPCRel is false.
Note that while it looks like some relocs (e.g. R_MIPS_26) can be converted into
the MIPS32r6/MIPS64r6 relocs (R_MIPS_PC*_S2), it isn't actually valid to do so.
Placeholders have been left in the testcase for unsupported relocs and relocs
that cannot be generated at the moment.
Reviewers: vkalintiris
Reviewed By: vkalintiris
Subscribers: llvm-commits, rafael
Differential Revision: http://reviews.llvm.org/D10184
llvm-svn: 239817
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10381
llvm-svn: 239815
Summary:
This affects other tools so the previous C++ API has been retained as a
deprecated function for the moment. Clang has been updated with a trivial
patch (not covered by the pre-commit review) to avoid breaking -Werror builds.
Other in-tree tools will be fixed with similar patches.
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
The first time this was committed it accidentally fixed an inconsistency in
triples in llvm-mc and this caused a failure. This inconsistency was fixed in
r239808.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10366
llvm-svn: 239812
When we multiply two 64-bit vectors, we extract lower and upper part and use the PMULUDQ instruction.
When one of the operands is a constant, the upper part may be zero, we know this at compile time.
Example: %a = mul <4 x i64> %b, <4 x i64> < i64 5, i64 5, i64 5, i64 5>.
I'm checking the value of the upper part and prevent redundant "multiply", "shift" and "add" operations.
llvm-svn: 239802
These are really immediate DUPs, and suffer from the same problem
with long instructions with a high/2 variant (e.g. smull).
By extending a MOVI (or DUP, before this patch), we can avoid an ext
on the other operand of the long instruction, e.g. turning:
ext.16b v0, v0, v0, #8
movi.4h v1, #0x53
smull.4s v0, v0, v1
into:
movi.8h v1, #0x53
smull2.4s v0, v0, v1
While there, add a now-necessary combine to fold (VT NVCAST (VT x)).
llvm-svn: 239799
This change is hopefully NFC. The only tricky part is that I changed the context instruction being used to the branch rather than the comparison. I believe both to be correct, but the branch is strictly more powerful. With the moved code, using the branch instruction is required for the basic block comparison test to return the same result. The previous code was able to directly access both the branch and the comparison where the revised code is not.
Differential Revision: http://reviews.llvm.org/D9652
llvm-svn: 239797
`LLVM_ENABLE_MODULES` builds sometimes fail because `Intrinsics.td`
needs to regenerate `Instrinsics.h` before anyone can include anything
from the LLVM_IR module. Represent the dependency explicitly to prevent
that.
llvm-svn: 239796
If a parameter to a function is known non-null, use the existing parameter attributes to record that fact at the call site. This has no optimization benefit by itself - that I know of - but is an enabling change for http://reviews.llvm.org/D9129.
Differential Revision: http://reviews.llvm.org/D9132
llvm-svn: 239795
This commit serializes the simple, scalar attributes from the
'MachineFunction' class.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10449
llvm-svn: 239790
This commit decouples the MIR printer and the MIR printing pass so
that it will be possible to move the MIR printer into a separate
machine IR library later on.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 239788
This commit creates a dummy LLVM IR function with one basic block and an unreachable
instruction for each parsed machine function when the MIR file doesn't have LLVM IR.
This change is required as the machine function analysis pass creates machine
functions only for the functions that are defined in the current LLVM module.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10135
llvm-svn: 239778
This commit reports an error when the MIR parser encounters a machine
function with the name that is the same as the name of a different
machine function.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10130
llvm-svn: 239774
This patch adds the safe stack instrumentation pass to LLVM, which separates
the program stack into a safe stack, which stores return addresses, register
spills, and local variables that are statically verified to be accessed
in a safe way, and the unsafe stack, which stores everything else. Such
separation makes it much harder for an attacker to corrupt objects on the
safe stack, including function pointers stored in spilled registers and
return addresses. You can find more information about the safe stack, as
well as other parts of or control-flow hijack protection technique in our
OSDI paper on code-pointer integrity (http://dslab.epfl.ch/pubs/cpi.pdf)
and our project website (http://levee.epfl.ch).
The overhead of our implementation of the safe stack is very close to zero
(0.01% on the Phoronix benchmarks). This is lower than the overhead of
stack cookies, which are supported by LLVM and are commonly used today,
yet the security guarantees of the safe stack are strictly stronger than
stack cookies. In some cases, the safe stack improves performance due to
better cache locality.
Our current implementation of the safe stack is stable and robust, we
used it to recompile multiple projects on Linux including Chromium, and
we also recompiled the entire FreeBSD user-space system and more than 100
packages. We ran unit tests on the FreeBSD system and many of the packages
and observed no errors caused by the safe stack. The safe stack is also fully
binary compatible with non-instrumented code and can be applied to parts of
a program selectively.
This patch is our implementation of the safe stack on top of LLVM. The
patches make the following changes:
- Add the safestack function attribute, similar to the ssp, sspstrong and
sspreq attributes.
- Add the SafeStack instrumentation pass that applies the safe stack to all
functions that have the safestack attribute. This pass moves all unsafe local
variables to the unsafe stack with a separate stack pointer, whereas all
safe variables remain on the regular stack that is managed by LLVM as usual.
- Invoke the pass as the last stage before code generation (at the same time
the existing cookie-based stack protector pass is invoked).
- Add unit tests for the safe stack.
Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
Lab at EPFL; updates and upstreaming by myself.
Differential Revision: http://reviews.llvm.org/D6094
llvm-svn: 239761
This commit connects the machine function analysis pass (which creates machine
functions) to the MIR parser, which will initialize the machine functions
with the state from the MIR file and reconstruct the machine IR.
This commit introduces a new interface called 'MachineFunctionInitializer',
which can be used to provide custom initialization for the machine functions.
This commit also introduces a new diagnostic class called
'DiagnosticInfoMIRParser' which is used for MIR parsing errors.
This commit modifies the default diagnostic handling in LLVMContext - now the
the diagnostics are printed directly into llvm::errs() so that the MIR parsing
errors can be printed with colours.
Reviewers: Justin Bogner
Differential Revision: http://reviews.llvm.org/D9928
llvm-svn: 239753
Summary:
NFC: no one uses AnalyzeBranchPredicate yet.
Add TargetInstrInfo::AnalyzeBranchPredicate and implement for x86. A
later change adding support for page-fault based implicit null checks
depends on this.
Reviewers: reames, ab, atrick
Reviewed By: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10200
llvm-svn: 239742
Summary:
TargetInstrInfo::getLdStBaseRegImmOfs to
TargetInstrInfo::getMemOpBaseRegImmOfs and implement for x86. The
implementation only handles a few easy cases now and will be made more
sophisticated in the future.
This is NFCI: the only user of `getLdStBaseRegImmOfs` (now
`getmemOpBaseRegImmOfs`) is `LoadClusterMotion` and `LoadClusterMotion`
is disabled for x86.
Reviewers: reames, ab, MatzeB, atrick
Reviewed By: MatzeB, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10199
llvm-svn: 239741
Summary:
This instruction encodes a loading operation that may fault, and a label
to branch to if the load page-faults. The locations of potentially
faulting loads and their "handler" destinations are recorded in a
FaultMap section, meant to be consumed by LLVM's clients.
Nothing generates FAULTING_LOAD_OP instructions yet, but they will be
used in a future change.
The documentation (FaultMaps.rst) needs improvement and I will update
this diff with a more expanded version shortly.
Depends on D10196
Reviewers: rnk, reames, AndyAyers, ab, atrick, pgavlin
Reviewed By: atrick, pgavlin
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10197
llvm-svn: 239740
LLVM targeting aarch64 doesn't correctly produce aligned accesses for non-aligned
data at -O0/fast-isel (-mno-unaligned-access).
The root cause seems to be in fast-isel not producing unaligned access correctly
for -mno-unaligned-access.
The patch just aborts fast-isel for loads and stores when -mno-unaligned-access is
present.
The regression test is updated to check this new test case (-mno-unaligned-access
together with fast-isel).
Differential Revision: http://reviews.llvm.org/D10360
llvm-svn: 239732
Summary:
This affects other tools so the previous C++ API has been retained as a
deprecated function for the moment. Clang has been updated with a trivial
patch (not covered by the pre-commit review) to avoid breaking -Werror builds.
Other in-tree tools will be fixed with similar trivial patches.
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10366
llvm-svn: 239721
This patch fixes a compilation time issue, when MachineSink faces PHIs
with a huge number of operands. This can happen for example in goto table
based interpreters, where some basic blocks can have several of those PHIs,
each one with several hundreds operands. MachineSink was spending a
significant time re-building and re-sorting the list of successors of
the current MachineBasicBlock. The computing and sorting of the current
MachineBasicBlock successors is now cached.
llvm-svn: 239720
Summary:
ValueTracking used to overwrite the analysis results computed from
assumes and dominating conditions. This patch fixes this issue.
Test Plan: test/Analysis/ValueTracking/assume.ll
Reviewers: hfinkel, majnemer
Reviewed By: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10283
llvm-svn: 239718
Re-commit after adding "-aarch64-neon-syntax=generic" to fix the failure on OS X.
This patch was firstly committed in r239514, then reverted in r239544 because of a syntax incompatible failure on OS X.
llvm-svn: 239711
As noted on Errc.h:
// * std::errc is just marked with is_error_condition_enum. This means that
// common patters like AnErrorCode == errc::no_such_file_or_directory take
// 4 virtual calls instead of two comparisons.
And on some libstdc++ those virtual functions conclude that
------------------------
int main() {
std::error_code foo = std::make_error_code(std::errc::no_such_file_or_directory);
return foo == std::errc::no_such_file_or_directory;
}
-------------------------
should exit with 0.
llvm-svn: 239683
StringSaver now always saves to a BumpPtrAllocator.
The only reason for having the virtual saveImpl is so lld can have a
thread safe version.
The reason for the distinct BumpPtrStringSaver class is to avoid the
virtual destructor.
llvm-svn: 239669
Now the library names in the Makefiles match the library names in
LLVMBuild.txt.
This should hopefully fix the remaining bot failures.
llvm-svn: 239661
r213101 changed the behaviour of this method to not only affect the
PostMachineScheduler scheduler but also the PostRAScheduler scheduler,
renaming should make this fact clear. Also document that the preferred
way is to specify this in the scheduling model instead of overriding
this method.
Differential Revision: http://reviews.llvm.org/D10427
llvm-svn: 239659
This will use Itinieraries if available, but will also work if just a
MCSchedModel is available.
Differential Revision: http://reviews.llvm.org/D10428
llvm-svn: 239658
On error, the temporary output stream wouldn't be flushed and therefore the
caller would see an empty error message.
Patch by Antoine Pitrou
Differential Revision: http://reviews.llvm.org/D10241
llvm-svn: 239646
Summary:
Scalarizer has two data structures that hold information about changes
to the function, Gathered and Scattered. These are cleared in finish()
at the end of runOnFunction() if finish() detects any changes to the
function.
However, finish() was checking for changes by only checking if
Gathered was non-empty. The function visitStore() only modifies
Scattered without touching Gathered. As a result, Scattered could have
ended up having stale data if Scalarizer only scalarized store
instructions. Since the data in Scattered is used during the execution
of the pass, this introduced dangling pointer errors.
The fix is to check whether both Scattered and Gathered are empty
before deciding what to do in finish().
Reviewers: srhines
Reviewed By: srhines
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10422
llvm-svn: 239644
into partitions. Also, add an option to clone stub definitions (not just decls)
into partitions: these definitions could be inlined in some places to avoid the
overhead of calling via the stub.
Found by inspection - no test case yet, although I plan to add a unit test for
this once the CompileOnDemand layer refactoring settles down.
llvm-svn: 239640
- Add glc, slc, and tfe operands to flat instructions
- Add missing flat instructions
- Fix the encoding of flat_load_dwordx3 and flat_store_dwordx3.
llvm-svn: 239637
Based on ArchType, Clang's driver can select a non-Clang compiler.
String parsing in Clang would have sufficed if it were only that,
however this change anticipates true llvm support.
Differential Revision: http://reviews.llvm.org/D10413
llvm-svn: 239631
In the glorious future of opaque pointer types, it won't be possible to
retrieve the pointee type of a pointer type which is what's being done
in this GEP loop - but the first iteration is always a pointer type and
the loop doesn't care about that case, except whether or not the index
is a constant.
So pull that special case out before the loop and start at the second
iteration (index 1) instead.
Originally committed in r236670 and reverted with a test case in
r239015. This change keeps the test case working while also avoiding
depending on pointee types.
llvm-svn: 239629
For hung off uses, we need a Use* to tell use where the operands are.
This was User::OperandList but we want to remove that to save space
of all subclasses which aren't making use of 'hung off uses'.
Hung off uses now allocate their own 'OperandList' Use* in the
User::new which they call.
getOperandList() now uses the hung off uses bit to work out where the
Use* for the OperandList lives. If a User has hung off uses, then this
bit tells them to go back a single Use* from the User* and use that
value as the OperandList.
If a User has no hung off uses, then we get the first operand by
subtracting (NumOperands * sizeof(Use)) from the User this pointer.
This saves a pointer from User and all subclasses. Given the average
size of a subclass of User is 112 or 128 bytes, this saves around 7% of space
With malloc tending to align to 16-bytes the real saving is typically more like 3.5%.
On 'opt -O2 verify-uselistorder.lto.bc', peak memory usage prior to this change
is 149MB and after is 143MB so the savings are around 2.5% of peak.
Looking at some passes which allocate many Instructions and Values, parseIR drops
from 54.25MB to 52.21MB while the Inliner calls to Instruction::clone() drops
from 28.20MB to 27.05MB.
Reviewed by Duncan Exon Smith.
llvm-svn: 239623
There are now 2 versions of User::new. The first takes a size_t and is the current
implementation for subclasses which need 0 or more Use's allocated for their operands.
The new version takes no extra arguments to say that this subclass needs 'hung off uses'.
The HungOffUses bool is now set in this version of User::new and we can assert in
allocHungOffUses that we are allowed to have hung off uses.
This ensures we call the correct version of User::new for subclasses which need hung off uses.
A future commit will then allocate space for a single Use* which will be used
in place of User::OperandList once that field has been removed.
Reviewed by Duncan Exon Smith.
llvm-svn: 239622
This is to try make it very clear that subclasses shouldn't be changing
the value directly. Now that OperandList for normal instructions is computed
using the NumOperands, its critical that the NumOperands is accurate or we
could compute the wrong offset to the first operand.
I looked over all places which update NumOperands and they are all safe.
Hung off use User's don't use NumOperands to compute the OperandList so they
are safe to continue to manipulate it. The only other User which changed it
was GlobalVariable which has an optional init list but always allocated space
for a single Use. It was correctly setting NumOperands to 1 before setting an
initializer, and setting it to 0 after clearing the init list, so the order was safe.
Added some comments to that code to make sure that this isn't changed in future
without being aware of this constraint.
Reviewed by Duncan Exon Smith.
llvm-svn: 239621
We don't want anyone to access OperandList directly as its going to be removed
and computed instead. This uses getter's and setter's instead in which we
can later change the underlying implementation of OperandList.
Reviewed by Duncan Exon Smith.
llvm-svn: 239620
The CFLAA code currently calls ConstantExpr::getAsInstruction which creates an instruction from a constant expr.
We then pass that instruction to the InstVisitor to analyze it.
Its not necessary to create these instructions as we can just cast from Constant to Operator in the visitor. This is how other InstVisitor’s such as SelectionDAGBuilder handle ConstantExpr.
llvm-svn: 239616
The alignment is not required, so we can just remove it for now.
The old code is a hack as it depends on the buffer management to find
the current column.
If the alignment is really desirable, the proper way to do it is
to pass in a formatted_raw_stream that knows the current column.
llvm-svn: 239603
ARMTargetParser::getFPUFeatures should disable fp16 whenever it
disables vfp4, as otherwise something like -mcpu=cortex-a7 -mfpu=none
leaves us with fp16 enabled (though the only effect that will have is
a wrong build attribute).
Differential Revision: http://reviews.llvm.org/D10397
llvm-svn: 239599
It is valid for globals to be unnamed, but aliases must have a name. To avoid
creating invalid IR, we need to assign names to any aliases we create that
point to unnamed objects that have been moved into combined globals.
llvm-svn: 239590
DebugLoc::getFnDebugLoc() should soon be removed. Also,
getDISubprogram() might become more effective soon and wouldn't need to
scan debug locations at all, if function-level metadata would be emitted
by Clang.
llvm-svn: 239586
Summary:
A side effect of this change is that it IRBuilder now automatically
created debug info locations for new instructions, which is the
same as debug location of insertion point. This is fine for the
functions in questions (GetStoreValueForLoad and
GetMemInstValueForLoad), as they are used in two situations:
* GVN::processLoad, which tries to eliminate a load. In this case
new instructions would have the same debug location as the load they
eventually replace;
* MaterializeAdjustedValue, which adds new instructions to the end
of the basic blocks, which could later be used to replace the load
definition. In this case we don't yet know the way the load would
be eventually replaced (either by assembling the precomputed values
via PHI, or by using them directly), so just using the basic block
strategy seems to be reasonable. There is also a special case
in the code that *would* adjust the location of the last
instruction replacing the load definition to the location of the
load.
Test Plan: regression test suite
Reviewers: echristo, dberlin, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10405
llvm-svn: 239585
We were putting them in the filter field, which is correct for 64-bit
but wrong for 32-bit.
Also switch the order of scope table entry emission so outermost entries
are emitted first, and fix an obvious state assignment bug.
llvm-svn: 239574
Remove the EFLAGS from the stackmap live-out mask. The EFLAGS register is not
supposed to be part of that set, because the X86 calling conventions mark the
register as NOT preserved.
Also remove the IP registers, since spilling and restoring those doesn't really
make any sense.
Related to rdar://problem/21019635.
llvm-svn: 239568
This intrinsic is like framerecover plus a load. It recovers the EH
registration stack allocation from the parent frame and loads the
exception information field out of it, giving back a pointer to an
EXCEPTION_POINTERS struct. It's designed for clang to use in SEH filter
expressions instead of accessing the EXCEPTION_POINTERS parameter that
is available on x64.
This required a minor change to MC to allow defining a label variable to
another absolute framerecover label variable.
llvm-svn: 239567
static local initialization isn't thread safe with MSVC and a race was
reported in PR23817. We can't use std::atomic because it's not trivially
constructible, so instead do some lame volatile global integer
manipulation.
llvm-svn: 239566
We cannot prepend __imp_ in the IR mangler because a function reference may
be emitted unmangled in a constant initializer. The linker is expected to
resolve such references to thunks. This is covered by the new test case.
Strictly speaking we ought to emit two undefined symbols, one with __imp_ and
one without, as we cannot know which symbol the final object file will refer
to. However, this would require rather intrusive changes to IRObjectFile,
and lld works fine without it for now.
This reimplements r239437, which was reverted in r239502.
Differential Revision: http://reviews.llvm.org/D10400
llvm-svn: 239560
Summary:
For the moment, TargetMachine::getTargetTriple() still returns a StringRef.
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: ted, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10362
llvm-svn: 239554
This makes emitAbsoluteSymbolDiff always succeed and moves logic from the asm
printer to it.
The object one now also works on ELF. If two symbols are in the same fragment,
we will never move them apart.
llvm-svn: 239552
This improves debug locations in passes that do a lot of basic block
transformations. Important case is LoopUnroll pass, the test for correct
debug locations accompanies this change.
Test Plan: regression test suite
Reviewers: dblaikie, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10367
llvm-svn: 239551
Use IRBuilder::Create(Cond)?Br instead of constructing instructions
manually with BranchInst::Create(). It's consistent with other
uses of IRBuilder in this pass, and has an additional important
benefit:
Using IRBuilder will ensure that new branch instruction will get
the same debug location as original terminator instruction it will
eventually replace.
For now I'm not adding a testcase, as currently original terminator
instruction also lack debug location due to missing debug location
propagation in BasicBlock::splitBasicBlock. That is, the testcase
will accompany the fix for the latter I'm going to mail soon.
llvm-svn: 239550
Revert "[AArch64] Match interleaved memory accesses into ldN/stN instructions."
Revert "Fixing MSVC 2013 build error."
The test/CodeGen/AArch64/aarch64-interleaved-accesses.ll test was failing on OS X.
llvm-svn: 239544
This only updates one of the uses. The other is used in cases
that may never touch memory, so I'm not sure why this is even
calling it. Perhaps there should be a new, similar hook for such
cases or pass -1 for unknown address space.
llvm-svn: 239540
Now actually stores the non-zero constant instead of 0.
I somehow forgot to include this part of r238108.
The test change was just an independent instruction order swap,
so just add another check line to satisfy CHECK-NEXT.
llvm-svn: 239539
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: llvm-commits, jfb, rengolin
Differential Revision: http://reviews.llvm.org/D10361
llvm-svn: 239538
On large goto table based interpreters, where phi nodes can have (very) large
fan-ins, isLiveOut exhibited poor performances: about 40% of the full
codegen time was spent in PHIElim, sorting MachineBasicBlock addresses.
This patch improve the performances for such cases, and does not show
compile time regressions on the LNT, at bootstrap (llvm+clang+lldb) or
any other benchmarks we have in-house.
llvm-svn: 239510
This patch ensures that SHL/SRL/SRA shifts for i8 and i16 vectors avoid scalarization. It builds on the existing i8 SHL vectorized implementation of moving the shift bits up to the sign bit position and separating the 4, 2 & 1 bit shifts with several improvements:
1 - SSE41 targets can use (v)pblendvb directly with the sign bit instead of performing a comparison to feed into a VSELECT node.
2 - pre-SSE41 targets were masking + comparing with an 0x80 constant - we avoid this by using the fact that a set sign bit means a negative integer which can be compared against zero to then feed into VSELECT, avoiding the need for a constant mask (zero generation is much cheaper).
3 - SRA i8 needs to be unpacked to the upper byte of a i16 so that the i16 psraw instruction can be correctly used for sign extension - we have to do more work than for SHL/SRL but perf tests indicate that this is still beneficial.
The i16 implementation is similar but simpler than for i8 - we have to do 8, 4, 2 & 1 bit shifts but less shift masking is involved. SSE41 use of (v)pblendvb requires that the i16 shift amount is splatted to both bytes however.
Tested on SSE2, SSE41 and AVX machines.
Differential Revision: http://reviews.llvm.org/D9474
llvm-svn: 239509
This patch corresponds to review:
http://reviews.llvm.org/D10096
This is the back end portion of the patch related to D10095.
The patch adds the instructions and back end intrinsics for:
vbpermq
vgbbd
llvm-svn: 239505
This reverts commit r239437.
This broke clang-cl self-hosts. We'd end up calling the __imp_ symbol
directly instead of using it to do an indirect function call.
llvm-svn: 239502
It hasn't been used since r130964.
This also removes MachineModuleInfo::isUsedFunction and
MachineModuleInfo::AnalyzeModule, both of which were only
there to support UsedFunctions.
llvm-svn: 239501
PhiNode, SwitchInst, LandingPad and IndirectBr all had virtually identical
logic for growing the hung off uses.
Move it to User so that they can all call a single shared implementation.
Their destructors were all empty after this change and were deleted. They all
have virtual clone_impl methods which can be used as vtable anchors.
Reviewed by Duncan Exon Smith.
llvm-svn: 239492
Now that the subclasses which care about hung off uses let ~User clean it up,
there's no need for a separate method. Just inline it to ~User and delete it.
Reviewed by Duncan Exon Smith.
llvm-svn: 239491
Currently all of the logic for deleting hung off uses, which PHI/switch/etc use,
is in their classes.
This adds a bit to Value which tracks whether that user had hung off uses,
then User can be responsible for clearing them instead of the sub classes.
Note, the bit used here was taken from NumOperands which was 30-bits.
Given the reduction to 29 bits, and the average User being just over 100 bytes,
a single User with 29-bits of num operands would need 50GB of RAM for itself
so its reasonable to assume that 29-bits is enough for now.
This is a step towards hiding all the hung off uses logic in the User.
Reviewed by Duncan Exon Smith.
llvm-svn: 239490
PhiNode's need to allocate space for an array of Use[N] and then BasicBlock*[N].
They had their own allocHungOffUses to handle all of this. This moves the logic
in to User::allocHungOffUses and PhiNode passes in a bool to say to allocate
the BB* space too.
Reviewed by Duncan Exon Smith.
llvm-svn: 239489
If the first argument to a function is a 'this' argument and the second
has the sret attribute, the ArgumentPromotion pass may promote the 'this'
argument to more than one argument, violating the IR constraint that 'sret'
may only be applied to the first or second argument.
Although this IR constraint is arguably unnecessary, it highlighted the fact
that ArgPromotion does not need to preserve this attribute. Dropping the
attribute reduces register pressure in the backend by avoiding the register
copy required by sret. Because sret implies noalias, we also replace the
former with the latter.
Differential Revision: http://reviews.llvm.org/D10353
llvm-svn: 239488
This is a reimplementation of D9780 at the machine instruction level rather than the DAG.
Use the MachineCombiner pass to reassociate scalar single-precision AVX additions (just a
starting point; see the TODO comments) to increase ILP when it's safe to do so.
The code is closely based on the existing MachineCombiner optimization that is implemented
for AArch64.
This patch should not cause the kind of spilling tragedy that led to the reversion of r236031.
Differential Revision: http://reviews.llvm.org/D10321
llvm-svn: 239486
O2 compiles just before GlobalDCE, unless we are preparing for LTO.
This pass eliminates available externally globals (turning them into
declarations), regardless of whether they are dead/unreferenced, since
we are guaranteed to have a copy available elsewhere at link time.
This enables additional opportunities for GlobalDCE.
If we are preparing for LTO (e.g. a -flto -c compile), the pass is not
included as we want to preserve available externally functions for possible
link time inlining. The FE indicates whether we are doing an -flto compile
via the new PrepareForLTO flag on the PassManagerBuilder.
llvm-svn: 239480
Determining proper debug locations for instructions created in
PHITransAddr is tricky. We use a simple approach here and simply copy
debug locations from instructions computing load address to
"corresponding" instructions re-creating the address computation
in predecessor basic blocks.
This may not always be correct, given all the rearrangement and
simplification going on, and debug locations may jump around a lot,
as the basic blocks we copy locations between may be very far from
each other.
Still, this would work good in most simple cases (e.g. when chain
of address computing instruction is short, or our mapping turns out
to be 1-to-1), and we desire to have *some* reasonable debug locations
associated with newly inserted instructions.
See http://reviews.llvm.org/D10351 review thread for more details.
Test Plan: regression test suite
Reviewers: spatel, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10351
llvm-svn: 239479
During statepoint lowering we can sometimes avoid spilling of the value if we know that it was already spilled for previous statepoint.
We were doing this by checking if incoming statepoint value was lowered into load from stack slot. This was working only in boundaries of one basic block.
But instead of looking at the lowered node we can look directly at the llvm-ir value and if it was gc.relocate (or some simple modification of it) look up stack slot for it's derived pointer and reuse stack slot from it. This allows us to look across basic block boundaries.
Differential Revision: http://reviews.llvm.org/D10251
llvm-svn: 239472
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rafael
Reviewed By: rafael
Subscribers: rafael, ted, jfb, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10311
llvm-svn: 239467
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rafael
Reviewed By: rafael
Subscribers: rafael, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10307
llvm-svn: 239465
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: echristo, rafael
Reviewed By: rafael
Subscribers: rafael, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10243
llvm-svn: 239464
fix segfault by checking for UnknownArch, since
getArchTypePrefix() will return nullptr for UnknownArch.
This fixes regression caused by r238424.
llvm-svn: 239456
Use a "safeseh" string attribute to do this. You would think we chould
just accumulate the set of personalities like we do on dwarf, but this
fails to account for the LSDA-loading thunks we use for
__CxxFrameHandler3. Each of those needs to make it into .sxdata as well.
The string attribute seemed like the most straightforward approach.
llvm-svn: 239448
This reverts commit 2e449ec5bcdf67b52b315b16c2128aaf25d5b73c.
This was svn r239440. Its currently failing an ARM test so reverting while I work out
what to do next.
llvm-svn: 239441
It wasn't possible to have a variable Symbol with offset or 'isCommon' so
this just enables better packing of the MCSymbol class.
Reviewed by Rafael Espindola.
llvm-svn: 239440
Summary:
The RegisterScavenger explicitly ignores <kill> flags on operands of
predicated instructions and therefore assumes that such registers remain
live. When it then scavenges such a register, it inserts a spill of this
(killed) register. This is invalid code and gets flagged up by the
verifier.
Nowadays kill flags are set correctly on predicated instructions. This
patch makes the Scavenger respect them.
The bug has so far only been triggered by an internal pass, so I don't
have a test case unfortunately.
Fixes PR23119.
Reviewers: hfinkel, tobiasvk_caf
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9039
llvm-svn: 239439
Test Plan: regression test suite
Reviewers: eugenis, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10343
llvm-svn: 239438
Summary:
We used to assume V->RAUW only modifies the operand list of V's user.
However, if V and V's user are Constants, RAUW may replace and invalidate V's
user entirely.
This patch fixes the above issue by letting the caller replace the
operand instead of calling RAUW on Constants.
Test Plan: @nested_const_expr and @rauw in access-non-generic.ll
Reviewers: broune, jholewinski
Reviewed By: broune, jholewinski
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D10345
llvm-svn: 239435
llvm-lib is intended to be a lib.exe compatible utility that also
understands bitcode. The implementation lives in a library so that
lld can use it to implement /lib.
Differential Revision: http://reviews.llvm.org/D10297
llvm-svn: 239434
This gets all the handler info through to the asm printer and we can
look at the .xdata tables now. I've convinced one small catch-all test
case to work, but other than that, it would be a stretch to say this is
functional.
The state numbering algorithm avoids doing any scope reconstruction as
we do for C++ to simplify the implementation.
llvm-svn: 239433
Store instructions do not modify register values and therefore it's safe
to form a store pair even if the source register has been read in between
the two store instructions.
Previously, the read of w1 (see below) prevented the formation of a stp.
str w0, [x2]
ldr w8, [x2, #8]
add w0, w8, w1
str w1, [x2, #4]
ret
We now generate the following code.
stp w0, w1, [x2]
ldr w8, [x2, #8]
add w0, w8, w1
ret
All correctness tests with -Ofast on A57 with Spec200x and EEMBC pass.
Performance results for SPEC2K were within noise.
llvm-svn: 239432
Based on feedback to r239428 by David Blaikie, use const_cast to reduce
duplication of the const and non-const versions of getNameEntryPtr.
Also have that method return the pointer to the name directly instead
of users having to then get the name from the union.
Finally, add a FIXME that we should use a static_assert once available in
the new operator.
llvm-svn: 239429
This should hopefully fix the 32-bit bots which were allocating space for a pointer
but needed to be aligned to 64-bits.
Now we allocate enough space for a uint64_t and a pointer and cast to the appropriate storage
llvm-svn: 239428
that was resetting it.
Remove the uses of DisableTailCalls in subclasses of TargetLowering and use
the value of function attribute "disable-tail-calls" instead. Also,
unconditionally add pass TailCallElim to the pipeline and check the function
attribute at the start of runOnFunction to disable the pass on a per-function
basis.
This is part of the work to remove TargetMachine::resetTargetOptions, and since
DisableTailCalls was the last non-fast-math option that was being reset in that
function, we should be able to remove the function entirely after the work to
propagate IR-level fast-math flags to DAG nodes is completed.
Out-of-tree users should remove the uses of DisableTailCalls and make changes
to attach attribute "disable-tail-calls"="true" or "false" to the functions in
the IR.
rdar://problem/13752163
Differential Revision: http://reviews.llvm.org/D10099
llvm-svn: 239427
Similarly to User which allocates a number of Use's prior to the this pointer,
allocate space for the Name* for MCSymbol only when we need a name.
Given that an MCSymbol is 48-bytes on 64-bit systems, this saves a decent % of space.
Given the verify_uselistorder test case with debug info and llc, 50k symbols have names
out of 700k so this optimises for the common case of temporary unnamed symbols.
Reviewed by David Blaikie.
llvm-svn: 239423
array of bytes. The generation of this byte arrays was expecting
the host to be little endian, which prevents big endian hosts to be
used in the generation of the PTX code. This patch fixes the
problem by changing the way the bytes are extracted so that it
works for either little and big endian.
llvm-svn: 239412
This represents some of the functionality we expose in the llvmlite Python
binding.
Patch by Antoine Pitrou
Differential Revision: http://reviews.llvm.org/D10222
llvm-svn: 239411
make_error_code(object_error) is slow because object::object_category()
uses a ManagedStatic variable. But the real problem is that the function is
called too frequently. This patch uses std::error_code() instead of
object_error::success. In most cases, we return "success", so this patch
reduces number of function calls to that function.
http://reviews.llvm.org/D10333
llvm-svn: 239409