sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
llvm-svn: 134021
Correctly parse the forms of the Thumb mov-immediate instruction:
1. 8-bit immediate 0-255.
2. 12-bit shifted-immediate.
The 16-bit immediate "movw" form is also legal with just a "mov" mnemonic,
but is not yet supported. More parser logic necessary there due to fixups.
llvm-svn: 133966
Sorry, this was a bad idea. Within clang these builtins are in a separate
"ARM" namespace, but the actual builtin names should clearly distinguish that
they are target specific.
llvm-svn: 133832
This caused linker errors when linking both libLLVMX86Desc and libLLVMX86CodeGen
into a single binary (for example when building a monolithic libLLVM shared library).
llvm-svn: 133791
target machine from those that are only needed by codegen. The goal is to
sink the essential target description into MC layer so we can start building
MC based tools without needing to link in the entire codegen.
First step is to refactor TargetRegisterInfo. This patch added a base class
MCRegisterInfo which TargetRegisterInfo is derived from. Changed TableGen to
separate register description from the rest of the stuff.
llvm-svn: 133782
Take #2. Don't piggyback on the existing config.build_mode. Instead,
define a new lit feature for each build feature we need (currently
just "asserts"). Teach both autoconf'd and cmake'd Makefiles to define
this feature within test/lit.site.cfg. This doesn't require any lit
harness changes and should be more robust across build systems.
llvm-svn: 133664
A RegisterTuples instance is used to synthesize super-registers by
zipping together lists of sub-registers. This is useful for generating
pseudo-registers representing register sequence constraints like 'two
consecutive GPRs', or 'an even-odd pair of floating point registers'.
The RegisterTuples def can be used in register set operations when
building register classes. That is the only way of accessing the
synthesized super-registers.
For example, the ARM QQ register class of pseudo-registers could have
been formed like this:
// Form pairs Q0_Q1, Q2_Q3, ...
def QQPairs : RegisterTuples<[qsub_0, qsub_1],
[(decimate QPR, 2),
(decimate (shl QPR, 1), 2)]>;
def QQ : RegisterClass<..., (add QQPairs)>;
Similarly, pseudo-registers representing '3 consecutive D-regs with
wraparound' look like:
// Form D0_D1_D2, D1_D2_D3, ..., D30_D31_D0, D31_D0_D1.
def DSeqTriples : RegisterTuples<[dsub_0, dsub_1, dsub_2],
[(rotl DPR, 0),
(rotl DPR, 1),
(rotl DPR, 2)]>;
TableGen automatically computes aliasing information for the synthesized
registers.
Register tuples are still somewhat experimental. We still need to see
how they interact with MC.
llvm-svn: 133407
Targets that need to change the default allocation order should use the
AltOrders mechanism instead. See the X86 and ARM targets for examples.
The allocation_order_begin() and allocation_order_end() methods have been
replaced with getRawAllocationOrder(), and there is further support
functions in RegisterClassInfo.
It is no longer possible to insert arbitrary code into generated
register classes. This is a feature.
llvm-svn: 133332
A register class can define AltOrders and AltOrderSelect instead of
defining method protos and bodies. The AltOrders lists can be defined
with set operations, and TableGen can verify that the alternative
allocation orders only contain valid registers.
This is currently an opt-in feature, and it is still possible to
override allocation_order_begin/end. That will not be true for long.
llvm-svn: 133320
optimizations when emitting calls to the function; instead those calls may
use faster relocations which require the function to be immediately resolved
upon loading the dynamic object featuring the call. This is useful when it
is known that the function will be called frequently and pervasively and
therefore there is no merit in delaying binding of the function.
Currently only implemented for x86-64, where it turns into a call through
the global offset table.
Patch by Dan Gohman, who assures me that he's going to add LangRef documentation
for this once it's committed.
llvm-svn: 133080
At the time I wrote this code (circa 2007), TargetRegisterInfo was using a std::set to perform these queries. Switching to the static hashtables was an obvious improvement, but in reality there's no reason to do anything other than scan.
With this change, total LLC time on a whole-program 403.gcc is reduced by approximately 1.5%, almost all of which comes from a 15% reduction in LiveVariables time. It also reduces the binary size of LLC by 86KB, thanks to eliminating a bunch of very large static tables.
llvm-svn: 133051
This prepares tablegen to compute register lists from set theoretic dag
expressions. This doesn't really make any difference as long as
Target.td still declares RegisterClass::MemberList as [Register].
llvm-svn: 133043
Make the Elements vector private and expose an ArrayRef through
getOrder() instead. getOrder will eventually provide multiple
user-specified allocation orders.
Use the sorted member set for member and subclass tests. Clean up a lot
of ad hoc searches.
llvm-svn: 133040
Measure the worst case number of probes for a miss instead of the less
conservative number of probes required for an insertion.
Lower the limit to < 6 probes worst case.
This doubles the size of the ARM and X86 hash tables, other targets are
unaffected. LiveVariables runs 12% faster with this change.
<rdar://problem/9598545>
llvm-svn: 132999
Make the hash tables as small as possible while ensuring that all
lookups can be done in less than 8 probes.
Cut the aliases hash table in half by only storing a < b pairs - it
is a symmetric relation.
Use larger multipliers on the initial hash function to ensure that it
properly covers the whole table, and to resolve some clustering in the
very regular ARM register bank.
This reduces the size of most of these tables by 4x - 8x. For instance,
the ARM tables shrink from 48 KB to 8 KB.
llvm-svn: 132888
The constant hash tables for sub-registers and overlaps are generated
the same way, so extract a function to generate and print the hash
table.
Also use the information computed by CodeGenRegisters.cpp instead of the
locally data.
llvm-svn: 132886
Besides moving structural computations to CodeGenRegisters.cpp, this
also well-defines the order of these lists:
- Sub-register lists come from a pre-order traversal of the graph
defined by the SubRegs lists in the .td files.
- Super-register lists are topologically ordered so no register comes
before any of its sub-registers. When the sub-register graph is not a
tree, independent super-registers appear in numerical order.
- Lists of overlapping registers are ordered according to register
number.
This reverses the order of the super-regs lists, but nobody was
depending on that. The previous order of the overlaps lists was odd, and
it may have depended on the precise behavior of std::stable_sort.
The old computations are still there, but will be removed shortly.
llvm-svn: 132881
I'll be moving some more code there to gather all of the
register-specific stuff in one place. Currently it is shared between
CodeGenTarget and RegisterInfoEmitter.
The plan is that CodeGenRegisters can compute the full register bank
structure while RegisterInfoEmitter only will handle the printing part.
llvm-svn: 132788
A TableGen backend can define how certain classes can be expanded into
ordered sets of defs, typically by evaluating a specific field in the
record. The SetTheory class can then evaluate DAG expressions that refer
to these named sets.
A number of standard set and list operations are predefined, and the
backend can add more specialized operators if needed. The -print-sets
backend is used by SetTheory.td to provide examples.
This is intended to simplify how register classes are defined:
def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>;
llvm-svn: 132621
Some register classes are only used for instruction operand constraints.
They should never be used for virtual registers. Previously, those
register classes were given an empty allocation order, but now you can
say 'let isAllocatable=0' in the register class definition.
TableGen calculates if a register is part of any allocatable register
class, and makes that information available in TargetRegisterDesc::inAllocatableClass.
The goal here is to eliminate use cases for overriding allocation_order_*
methods.
llvm-svn: 132508
same dwarf number. This will be used for creating a dwarf number to register
mapping.
The only case that needs this so far is the XMM/YMM registers that unfortunately
do have the same numbers.
llvm-svn: 132314
switch. With this newfound organization, teach tblgen how not to give
all intrinsics the 'nounwind' attribute. Introduce a new intrinsic,
llvm.eh.resume, which does not have this attribute. Documentation and uses
to follow.
llvm-svn: 132252
There was no way to check if a given register/mode pair was valid. We now return
an error code (-2) instead of asserting. If anyone thinks that an assert
at this point is really needed, we can autogen a hasValidDwarfRegNum instead.
llvm-svn: 132236
under cmake).
Add libprofile_rt.a so that we can tell clang to link against it in --coverage
mode. Also turn it on by default in cmake builds.
Oscar, this touches a change you made for EXCLUDE_FROM_ALL support -- I think
I've done the right thing, but please let me know (or fix and commit) if not!
llvm-svn: 130470
Unfortunately, my only testcase for this is fragile, and the ARM AsmParser can't round trip the instruction in question.
<rdar://problem/9345702>
llvm-svn: 130410
On the x86-64 and thumb2 targets, some registers are more expensive to encode
than others in the same register class.
Add a CostPerUse field to the TableGen register description, and make it
available from TRI->getCostPerUse. This represents the cost of a REX prefix or a
32-bit instruction encoding required by choosing a high register.
Teach the greedy register allocator to prefer cheap registers for busy live
ranges (as indicated by spill weight).
llvm-svn: 129864
the generated FastISel. X86 doesn't need to generate code to match ADD16ri8
since ADD16ri will do just fine. This is a small codesize win in the generated
instruction selector.
llvm-svn: 129692
value constraints on them (when defined as ImmLeaf's). This is particularly important
for X86-64, where almost all reg/imm instructions take a i64immSExt32 immediate operand,
which has a value constraint. Before this patch we ended up iseling the examples into
such amazing code as:
movabsq $7, %rax
imulq %rax, %rdi
movq %rdi, %rax
ret
now we produce:
imulq $7, %rdi, %rax
ret
This dramatically shrinks the generated code at -O0 on x86-64.
llvm-svn: 129691
kind of predicate: one that is specific to imm nodes. The predicate function
specified here just checks an int64_t directly instead of messing around with
SDNode's. The virtue of this is that it means that fastisel and other things
can reason about these predicates.
llvm-svn: 129675
structure and fix some fixmes. We now have a TreePredicateFn class
that handles all of the decoding of these things. This is an internal
cleanup that has no impact on the code generated by tblgen.
llvm-svn: 129670
2. implement rdar://9289501 - fast isel should fold trivial multiplies to shifts
3. teach tblgen to handle shift immediates that are different sizes than the
shifted operands, eliminating some code from the X86 fast isel backend.
4. Have FastISel::SelectBinaryOp use (the poorly named) FastEmit_ri_ function
instead of FastEmit_ri to simplify code.
llvm-svn: 129666
If enabled, this will attempt to use the CC_LOG_DIAGNOSTICS feature I dropped
into Clang to print a log of all the diagnostics generated during an individual
build (from the top-level). Not sure if this will actually be useful, but for
now it is handy for testing the option.
llvm-svn: 129312
is substantially different than a(b|c)d. Form the latter regex instead.
This found a few problems in the testsuite, which serves as its test.
llvm-svn: 129196
with the newer, cleaner model. It uses the IAPrinter class to hold the
information that is needed to match an instruction with its alias. This also
takes into account the available features of the platform.
There is one bit of ugliness. The way the logic determines if a pattern is
unique is O(N**2), which is gross. But in reality, the number of items it's
checking against isn't large. So while it's N**2, it shouldn't be a massive time
sink.
llvm-svn: 129110
- Also emit a list of packages and groups sorted by name
- Avoid iterating over DenseSet so that the output of the arrays is deterministic.
llvm-svn: 128489
According to A8.6.189 STM/STMIA/STMEA (Encoding T1), there's only tSTMIA_UPD available.
Ignore tSTMIA for the decoder emitter and add a test case for that.
llvm-svn: 128246
Set the encoding bits to {0,?,?,0}, not 0. Plus delegate the disassembly of ADR to
the more generic ADDri/SUBri instructions, and add a test case for that.
llvm-svn: 128234
On MSVCRT and compatible, output of %e is incompatible to Posix by default. Number of exponent digits should be at least 2. "%+03d"
FIXME: Implement our formatter in future!
llvm-svn: 127872
instruction set. This code adds support for the VEX prefix
and for the YMM registers accessible on AVX-enabled
architectures. Instruction table support that enables AVX
instructions for the disassembler is in an upcoming patch.
llvm-svn: 127644
CodeGenRegister entries. Use this information to more intelligently build
the literal register entires in the DAGISel matcher table. Specifically,
use a single-byte OPC_EmitRegister entry for registers with a value of
less than 256 and OPC_EmitRegister2 entry for registers with a larger value.
rdar://9066491
llvm-svn: 127456
It broke the llvm-gcc-native-mingw32 buildbot, and we need all of them to be green for the 2.9 branch.
Takumi, please reapply after we branch, preferably with a fix ;-)
llvm-svn: 127107
number of threads. In that case make the number of threads
equal to the number of jobs and launch one jobs on each
thread. This makes things work like make -j.
llvm-svn: 127045
InstAlias<{alias}, {aliasee}>;
The InstAlias instruction should be able to go from the MCInst to the
{alias}. All of the information is there to match the MCInst with the
{aliasee}. From there, it's a simple matter to emit the {alias}, with the
correct operands from the {aliasee}.
The code this patch generates can be used by the InstPrinter to automatically
print out the alias without having to write special C++ code to handle the
situation.
This is a WIP, and therefore are several limitations. For instance, it cannot
handle AsmOperands at the moment. It also doesn't know what to do when two
{alias}es match the same {aliasee}. (Currently, it just ignores those two cases
and allows the printInstruction method to handle them.)
llvm-svn: 126538
--force-configure to force running configure before building.
--extra-llvm-config-flags
--extra-llvm-gcc-config-flags
--extra-gcc-config-flags
Pass additional argument to the various configure invocations.
This also eliminates a default build flavor because explicitly
specifying builds could result in build flavors being run repeatedly.
Finally, turn off fortran builds for the moment because install
appears to be broken.
llvm-svn: 126510
A major part of its (eventual) goal is to support a much cleaner separation between disassembly callbacks
provided by the target and the disassembler emitter itself, i.e. not requiring hardcoding of knowledge in tblgen
like the existing disassembly emitters do.
The hope is that some day this will allow us to replace the existing non-Thumb ARM disassembler and remove
some of the hacks the old one introduced to tblgen.
llvm-svn: 125966
FIXME: It does not improve MSVC's issue.
[Danil Malyshev] Defining PRINTF_EXPONENT_DIGITS env is the suggested way to make MinGW ANSI/POSIX compatible. This is not only about the case we are discussing, but in general, I'd like to have explicitly defined compatibility mode for all the tests running on MinGW.
llvm-svn: 125725
- Add custom operand matching for imod and iflags.
- Rename SplitMnemonicAndCC to SplitMnemonic since it splits more than CC
from mnemonic.
- While adding ".w" as an operand, don't change "Head" to avoid passing the
wrong mnemonic to ParseOperand.
- Add asm parser tests.
- Add disassembler tests just to make sure it can catch all cps versions.
llvm-svn: 125489
Teach the AsmMatcher handling to distinguish between an error custom-parsing
an operand and a failure to match. The former should propogate the error
upwards, while the latter should continue attempting to parse with
alternative matchers.
Update the ARM asm parser accordingly.
llvm-svn: 125426
When matching operands for a candidate opcode match in the auto-generated
AsmMatcher, check each operand against the expected operand match class.
Previously, operands were classified independently of the opcode being
handled, which led to difficulties when operand match classes were
more complicated than simple subclass relationships.
llvm-svn: 125245