Instead, run both EH preparation passes, and have them both ignore
functions with unrecognized EH personalities. Pass delegation involved
some hacky code for creating an AnalysisResolver that we don't need now.
llvm-svn: 231995
Summary:
I don't know why every singled backend had to redeclare its own DataLayout.
There was a virtual getDataLayout() on the common base TargetMachine, the
default implementation returned nullptr. It was not clear from this that
we could assume at call site that a DataLayout will be available with
each Target.
Now getDataLayout() is no longer virtual and return a pointer to the
DataLayout member of the common base TargetMachine. I plan to turn it into
a reference in a future patch.
The only backend that didn't have a DataLayout previsouly was the CPPBackend.
It now initializes the default DataLayout. This commit is NFC for all the
other backends.
Test Plan: clang+llvm ninja check-all
Reviewers: echristo
Subscribers: jfb, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8243
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231987
CodeGen incorrectly ignores (assert from APInt) constant index bigger
than 2^64 in getelementptr instruction. This is a test and fix for that.
Patch by Paweł Bylica!
Reviewed By: rnk
Subscribers: majnemer, rnk, mcrosier, resistor, llvm-commits
Differential Revision: http://reviews.llvm.org/D8219
llvm-svn: 231984
The PowerPC backend had a number of loads that were marked as canFoldAsLoad
(and I'm partially at fault here for copying around the relevant line of
TableGen definitions without really looking at what it meant). This is not
right; PPC (non-memory) instructions don't support direct memory operands, and
so there is nothing a 'foldable' instruction could be folded into.
Noticed by inspection, no test case.
The one thing we might lose by doing this is ability to fold some loads into
stackmap/patchpoint pseudo-instructions. However, this was untested, and would
not obviously have worked for extending loads, and I'd rather re-add support
for that once it can be tested.
llvm-svn: 231982
that control, individually, all of the disparate things it was
controlling.
At the same time move a FIXME in the Hexagon port to a new
subtarget function that will enable a user of the machine
scheduler to avoid using the source scheduler for pre-RA-scheduling.
The FIXME would have this removed, but involves either testcase
changes or adding -pre-RA-sched=source to a few testcases.
llvm-svn: 231980
time. The target independent code was passing in one all the
time and targets weren't checking validity before using. Update
a few calls to pass in a MachineFunction where necessary.
llvm-svn: 231970
This reverts commit r231957.
IntervalMap currently doesn't support keys more aligned than host pointers
and I've been using it with uint64_t keys. This asserts on some 32bits
systems.
Revert while I work on an IntervalMap generalization.
llvm-svn: 231967
If a function is going in an unique section (because of -ffunction-sections
for example), putting a jump table in .rodata will keep .rodata alive and
that will keep alive any other function that also has a jump table.
Instead, put the jump table in a unique section that is associated with the
function.
llvm-svn: 231961
The main issue being fixed here is that APCS targets handling a "byval align N"
parameter with N > 4 were miscounting what objects were where on the stack,
leading to FrameLowering setting the frame pointer incorrectly and clobbering
the stack.
But byval handling had grown over many years, and had multiple layers of cruft
trying to compensate for each other and calculate padding correctly. This only
really needs to be done once, in the HandleByVal function. Elsewhere should
just do what it's told by that call.
I also stripped out unnecessary APCS/AAPCS distinctions (now that Clang emits
byvals with the correct C ABI alignment), which simplified HandleByVal.
rdar://20095672
llvm-svn: 231959
Gather the function ranges [low_pc, high_pc) during DIE selection and
store them along with the offset to apply to them to get the linked
addresses.
This is just the data collection part, it comes with no tests. That
information will be used in multiple followup commits to perform the
relocation of line tables and range sections among other things, and
these commits will add tests.
llvm-svn: 231957
DW_AT_low_pc on functions is taken care of by the relocation processing, but
DW_AT_high_pc and DW_AT_low_pc on other lexical scopes need special handling.
llvm-svn: 231955
This is a follow-up to r231182. This adds the "vbroadcasti128" instruction
back, but without the intrinsic mapping. Also add a test to check the
instriction encoding.
This is related to rdar://problem/18742778.
llvm-svn: 231945
Summary:
The generic ELF TargetObjectFile defaults to .ctors, but Linux's
defaults to .init_array by calling InitializeELF with the value of
UseInitArray from TargetMachine. Make NaCl's behavior match.
Reviewers: jvoung
Differential Revision: http://reviews.llvm.org/D8240
llvm-svn: 231934
The CallGraphNode function "addCalledFunction()" asserts that edges are not to intrinsics.
This patch makes sure that the Inliner does not add such an edge to the callgraph.
Fix for clang crash by assertion: https://llvm.org/bugs/show_bug.cgi?id=22857
Differential Revision: http://reviews.llvm.org/D8231
llvm-svn: 231927
NFC currently but required as a prerequisite for using
the Microsoft resource compiler in conjunction with
CMake's ninja generator, which knows how to filter flags
appropriately, but not definitions.
Differential Revision: http://reviews.llvm.org/D8188
llvm-svn: 231924
As of r231908, the test I added in r231902 actually gets run - but I'd
checked in a stale version of the input so it didn't pass. Fix the
input and un-xfail the test.
llvm-svn: 231911
This causes a crash if the referenced intrinsic was malformed. In this case, we
would already have reported an error on the referenced intrinsic, but then
crashed on the second one when it tried to introspect the first without
error checking.
llvm-svn: 231910
There were also errors in the CHECK line which I fixed and the test
doesn't actually pass as the "100" is in the wrong line. Not sure
whether this is a test failure or a coverage failure so making the test
XFAIL for now.
llvm-svn: 231908
Given that large parts of inst combine is restricted to instructions which have one use, getting rid of a use on the condition can help the effectiveness of the optimizer. Also, it allows the condition to potentially be deleted by instcombine rather than waiting for another pass.
I noticed this completely by accident in another test case. It's not anything that actually came from a real workload.
p.s. We should probably do the same thing for switch instructions.
Differential Revision: http://reviews.llvm.org/D8220
llvm-svn: 231881
There are still 4 tests that check for DW_AT_MIPS_linkage_name,
because they specify DWARF 2 or 3 in the module metadata. So, I didn't
create an explicit version-based test for the attribute.
Differential Revision: http://reviews.llvm.org/D8227
llvm-svn: 231880
This patch adds limited support in ValueTracking for inferring known bits of a value from conditional expressions which must be true to reach the instruction we're trying to optimize. At this time, the feature is off by default. Once landed, I'm hoping for feedback from others on both profitability and compile time impact.
Forms of conditional value propagation have been tried in LLVM before and have failed due to compile time problems. In an attempt to side step that, this patch only considers conditions where the edge leaving the branch dominates the context instruction. It does not attempt full dataflow. Even with that restriction, it handles many interesting cases:
* Early exits from functions
* Early exits from loops (for context instructions in the loop and after the check)
* Conditions which control entry into loops, including multi-version loops (such as those produced during vectorization, IRCE, loop unswitch, etc..)
Possible applications include optimizing using information provided by constructs such as: preconditions, assumptions, null checks, & range checks.
This patch implements two approaches to the problem that need further benchmarking. Approach 1 is to directly walk the dominator tree looking for interesting conditions. Approach 2 is to inspect other uses of the value being queried for interesting comparisons. From initial benchmarking, it appears that Approach 2 is faster than Approach 1, but this needs to be further validated.
Differential Revision: http://reviews.llvm.org/D7708
llvm-svn: 231879
This lets us pass the symbol to the constructor and avoid the mutable field.
This also opens the way for outputting the symbol only when needed, instead
of outputting them at the start of the file.
llvm-svn: 231859
- Use TargetLowering to check for the actual cost of each extension.
- Provide a factorized method to check for the cost of an extension:
TargetLowering::isExtFree.
- Provide a virtual method TargetLowering::isExtFreeImpl for targets to be able
to tune the cost of non-free extensions.
This refactoring offers a better granularity to model what really happens on
different targets.
No performance changes and very few code differences.
Part of <rdar://problem/19267165>
llvm-svn: 231855
The debug message was pretty confusing here. It only reported the
situation with memchecks without the result of the dependence analysis.
Now it prints whether the loop is safe from the POV of the dependence
analysis and if yes, whether we need memchecks.
llvm-svn: 231854
Summary: This change leverages the cross-compiling functionality in the build system to build a release tablegen executable for use during the build.
Reviewers: resistor, rnk
Reviewed By: rnk
Subscribers: rnk, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D7349
llvm-svn: 231842
This adds new node types for each intrinsic.
For instance, for addv, we have AArch64ISD::UADDV, such that:
(v4i32 (uaddv ...))
is the same as
(v4i32 (scalar_to_vector (i32 (int_aarch64_neon_uaddv ...))))
that is,
(v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(i32 (int_aarch64_neon_uaddv ...)), ssub)
In a combine, we transform all such across-vector-lanes intrinsics to:
(i32 (extract_vector_elt (uaddv ...), 0))
This has one big advantage: by making the extract_element explicit, we
enable the existing patterns for lane-aware instructions to fire.
This lets us avoid needlessly going through the GPRs. Consider:
uint32x4_t test_mul(uint32x4_t a, uint32x4_t b) {
return vmulq_n_u32(a, vaddvq_u32(b));
}
We now generate:
addv.4s s1, v1
mul.4s v0, v0, v1[0]
instead of the previous:
addv.4s s1, v1
fmov w8, s1
dup.4s v1, w8
mul.4s v0, v1, v0
rdar://20044838
llvm-svn: 231840
Most are redundant, and they never seem to fire.
The V128 integer patterns already exist in the INS multiclass.
The duplicates only fire when the vector index type isn't i64,
because they accept "imm" instead of an explicit "i64", as the
instruction definition patterns do.
TLI::getVectorIdxTy is i64 on AArch64, so this should never happen.
Also, one of them had a typo: for i64, INSvi32lane was used.
I noticed because I mistakenly used an explicit i32 as the idx type,
and got ins.s for an i64 vector_insert.
The V64 patterns also don't seem to ever fire, as V64 vector
extract/insert are legalized to V128.
The equivalent float patterns are unique and useful, so keep them.
No functional change intended; none exhibited on the LIT and LNT tests.
llvm-svn: 231838
Follow up from r231505.
Fix the non-determinism by using a MapVector and reintroduce the AArch64
testcase. Defer deleting the got candidates up to the end and remove
them in a bulk, avoiding linear time removal of each element.
Thanks to Renato Golin for trying it out on other platforms.
llvm-svn: 231830
This is the final patch that actually introduces the new parameter of
partition mapping to RuntimePointerCheck::needsChecking.
Another API (LAI::getInstructionsForAccess) is also exposed that helps
to map pointers to instructions because ultimately we partition
instructions.
The WIP version of the Loop Distribution pass in D6930 has been adapted
to use all this. See for example, how
InstrPartitionContainer::computePartitionSetForPointers sets up the
partitions using the above API and then calls to LAI::addRuntimeCheck
with the pointer partitions.
llvm-svn: 231818
Now the analysis won't "fail" if the memchecks exceed the threshold. It
is the transform pass' responsibility to perform the check.
This allows the transform pass to further analyze/eliminate the
memchecks. E.g. in Loop distribution we only need to check pointers
that end up in different partitions.
Note that there is a slight change of functionality here. The logic in
analyzeLoop is that if dependence checking fails due to non-constant
distance between the pointers, another attempt is made to prove safety
of the dependences purely using run-time checks.
Before this patch we could fail the loop due to exceeding the memcheck
threshold after the first step, now we only check the threshold in the
client after the full analysis. There is no measurable compile-time
effect but I wanted to record this here.
llvm-svn: 231817
The check for the number of memchecks will be moved to the client of
this analysis. Besides allowing for transform-specific thresholds, this
also lets Loop Distribution post-process the memchecks; Loop
Distribution only needs memchecks between pointers of different
partitions.
The motivation for this first patch is to untangle the CanDoRT check
from the NumComparison check before moving the NumComparison part.
CanDoRT means that we couldn't determine the bounds for the pointer.
Note that NumComparison is set independent of this flag.
llvm-svn: 231816
If anyone is using this for some strange reason,
LLVMInitializeNVPTXAsmPrinter does exactly the same thing and is what
other LLVM tools are calling.
llvm-svn: 231810
The dependences are now expose through the new getInterestingDependences
API so we can use that with -analyze too and fix the FIXME.
This lets us remove the test that relied on -debug to check the
dependences.
llvm-svn: 231807
Gather an array of interesting dependences rather than just failing
after the first unsafe one and regarding the loop unsafe. Loop
Distribution needs to be able to collect all dependences in order to
isolate the dependence cycles into their own partition.
Since the dependence checking algorithm is quadratic in terms of
accesses sharing the same underlying pointer, I am applying a cut-off
threshold (MaxInterestingDependence). Exceeding that, the logic reverts
back to the original approach deeming the loop unsafe upon encountering
the first unsafe dependence.
The main idea of the patch is to split isDepedent from directly
answering the question whether the dep is safe for vectorization to
return a dependence type which then gets mapped to old boolean result
using Dependence::isSafeForVectorization.
Tested that this was compile-time neutral on SpecINT2006 LTO bitcode
inputs. No assembly change on the testsuite including external.
llvm-svn: 231806
LoopDistribution needs to query various results of the dependence
analysis. This series will expose some more APIs and state of the
dependence checker.
This patch is a simple one to just expose the DepChecker instance. The
set is compile-time neutral measured with LTO bitcode files of
SpecINT2006. Also there is no assembly change on the testsuite.
llvm-svn: 231805
This makes code that uses section relative expressions (debug info) simpler and
less brittle.
This is still a bit awkward as the symbol is created late and has to be
stored in a mutable field.
I will move the symbol creation earlier in the next patch.
llvm-svn: 231802
Also it extracts getCopyFromRegs helper function in SelectionDAGBuilder as we need to be able to customize type of the register exported from basic block during lowering of the gc.result.
(Resubmitting this change after not being able to reproduce buildbot failure)
Differential Revision: http://reviews.llvm.org/D7760
llvm-svn: 231800
When tail merging it may be necessary to remove MMOs from memory operations to
ensures later passes (e.g., MI sched) conservatively compute dependencies.
Currently, we only remove the MMO from the common tail if the MMO doesn't match
with the relative instruction in the non-common tail(s).
A more robust solution would be to add multiple MMOs from the duplicate MIs to
the new MI. Currently ScheduleDAGInstrs.cpp ignores all MMOs on instructions
with multiple MMOs, so this solution is equivalent for the time being.
No test case included as this is incredibly difficult to reproduce.
Patch was a collaborative effort between Ana Pazos and myself.
Phabricator: http://reviews.llvm.org/D7769
llvm-svn: 231799
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
This is the sibling patch for the Clang half of this change:
http://reviews.llvm.org/D8088
Differential Revision: http://reviews.llvm.org/D8086
llvm-svn: 231794
This crash occurs due to memory corruption when trying to update dependency
direction based on Constraints.
This crash was observed during lnt regression of Polybench benchmark test case dynprog.
Review: http://reviews.llvm.org/D8059
llvm-svn: 231788
This crash in Dependency analysis is because we assume here that in case of UsefulGEP
both source and destination have the same number of operands which may not be true.
This incorrect assumption results in crash while populating Pairs. Fix the same.
This crash was observed during lnt regression for code such as-
struct s{
int A[10][10];
int C[10][10][10];
} S;
void dep_constraint_crash_test(int k,int N) {
for( int i=0;i<N;i++)
for( int j=0;j<N;j++)
S.A[0][0] = S.C[0][0][k];
}
Review: http://reviews.llvm.org/D8162
llvm-svn: 231784
Summary:
This is part of the work to support memory constraints that behave
differently to 'm'. The subsequent patches will expand on the existing
encoding (which is a 32-bit int) and as a result in some flag words will no
longer fit into an i16. This problem only affected the MSP430 target which
appears to have 16-bit pointers.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D8168
llvm-svn: 231783
We failed to use a marking set to properly handle recursive types, which caused use
to recurse infinitely and eventually overflow the stack.
llvm-svn: 231760
In this situation we would always have already flagged an error on the statepoint intrinsic,
but then we carry on to parse other, related GC intrinsics, and could end up crashing during that
verification when they try to access data from the malformed statepoint.
llvm-svn: 231759
ReplaceInstUsesWith needs to return nullptr when the input has no users,
because in that case it does not mutate the program. Otherwise, we can
get stuck in an infinite loop of repeatedly attempting to constant fold
and instruction with no users.
llvm-svn: 231755
When referring to a symbol in a dwarf section on ELF we should use
.long foo
instead of
.long foo - .debug_something
because ELF is unaware of the content of the sections and therefore needs
relocations. This has nothing to do with optimizing a -0.
llvm-svn: 231751
They mark the start of a compile unit, so name them .Lcu_*. Using
Section->getLabelBeginName() makes it looks like they mark the start of the
section.
While at it, switch to createTempSymbol to avoid collisions with labels
created in inline assembly. Not sure if a "don't crash" test is worth it.
With this getLabelBeginName is dead, delete it.
llvm-svn: 231750
Last commit fixed the handling of hash collisions, but it introdcuced
unneeded bucket terminators in some places. The generated table was
correct, it can just be a tiny bit smaller. As the previous table was
correct, the test doesn't need updating. If we really wanted to test
this, I could add the section size to the dwarf dump and test for a
precise value there. IMO the correctness test is sufficient.
llvm-svn: 231748
CFLAA didn't know how to properly handle ConstantExprs; it would silently
ignore them. This was a problem if the ConstantExpr is, say, a GEP of a global,
because CFLAA wouldn't realize that there's a global there. :)
llvm-svn: 231743
We now treat pointers given to ptrtoint and pointers retrieved from
inttoptr as similar to arguments or globals (can alias anything, etc.)
This solves some of the problems we were having with giving incorrect
results.
llvm-svn: 231741
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
It turns out accelerator tables where totally broken if they contained
entries with colliding hashes. The failure mode is pretty bad, as it not
only impacted the colliding entries, but would basically make all the
entries after the first hash collision pointing in the wrong place.
The testcase uses the symbol names that where found to collide during a
clang build.
From a performance point of view, the patch adds a sort and a linear
walk over each bucket contents. While it has a measurable impact on the
accelerator table emission, it's not showing up significantly in clang
profiles (and I'd argue that correctness is priceless :-)).
llvm-svn: 231732
Author: Lang Hames <lhames@gmail.com>
Date: Mon Mar 9 23:51:09 2015 +0000
[Orc][MCJIT][RuntimeDyld] Add header that was accidentally left out of r231724.
Author: Lang Hames <lhames@gmail.com>
Date: Mon Mar 9 23:44:13 2015 +0000
[Orc][MCJIT][RuntimeDyld] Add symbol flags to symbols in RuntimeDyld. Thread the
new types through MCJIT and Orc.
In particular, add a 'weak' flag. When plumbed through RTDyldMemoryManager, this
will allow us to distinguish between weak and strong definitions and find the
right ones during symbol resolution.
llvm-svn: 231731
new types through MCJIT and Orc.
In particular, add a 'weak' flag. When plumbed through RTDyldMemoryManager, this
will allow us to distinguish between weak and strong definitions and find the
right ones during symbol resolution.
llvm-svn: 231724
This fixes a subtle issue that was introduced in r205153.
When reusing a store for the extractelement expansion (to load directly
from it, inserting of going through the stack), later stores to the
same location might have overwritten the data we were expecting to
extract from.
To fix that, we need to explicitly replace the chain going out of the
reused store, so that later stores also have an explicit dependency on
the generated element-extracting loads, and can't clobber them.
rdar://20066785
Differential Revision: http://reviews.llvm.org/D8180
llvm-svn: 231721
Fix the double-deletion of AnalysisResolver when delegating through to
Dwarf EH preparation by creating one from scratch. Hopefully the new
pass manager simplifies this.
This reverts commit r229952.
llvm-svn: 231719
Summary:
This removes some duplicated code, and also helps optimization: e.g. in
the test case added, `%idx ULT 128` in `@x` is not currently optimized
to `true` by `-indvars` but will be, after this change.
The only functional change in ths commit is that for add recurrences,
ScalarEvolution::getRange will be more aggressive -- computing the
unsigned (resp. signed) range for a SCEVAddRecExpr will now look at the
NSW (resp. NUW) bits and check for signed (resp. unsigned) overflow.
This can be a strict improvement in some cases (such as the attached
test case), and should be no worse in other cases.
Reviewers: atrick, nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8142
llvm-svn: 231709
Summary:
Unused in this commit, but will be used in a subsequent change (D8142)
by a FileCheck test.
Reviewers: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8143
llvm-svn: 231708
I have a test for that issue, but I didn't include it in the commit as it's
a 200KB file for a pretty minor issue. (The reason the file is so big is
that it needs > 1024 variables/functions to trigger and that with debug
information.
The issue/fix on the other side is totally trivial. If poeple want the test
commited, I can do that. It just didn't seem worth it to me.
llvm-svn: 231701
clang-cl would warn that this value is not representable in 'int':
enum { FeatureX = 1ULL << 31 };
All MS enums are 'ints' unless otherwise specified, so we have to use an
explicit type. The AMDGPU target just hit 32 features, triggering this
warning.
Now that we have C++11 strong enum types, we can also eliminate the
'const uint64_t' codepath from tablegen and just use 'enum : uint64_t'.
llvm-svn: 231697
CloudABI is a POSIX-like runtime environment built around the concept of
capability-based security. More details:
https://github.com/NuxiNL/cloudlibc
CloudABI uses its own ELFOSABI number. This number has been allocated by
the maintainers of ELF a couple of days ago.
Reviewed by: echristo
llvm-svn: 231681
In the case where just tables are part of the function section, this produces
more readable assembly by avoiding switching to the eh section and back
to .text.
This would also break with non unique section names, as trying to switch to
a unique section actually creates a new one.
llvm-svn: 231677
Summary:
Code is mostly copied from AArch64 port and modified where needed for Mips.
This handles the "non" legal cases of logical ops. Legal cases are handled by tablegen patterns.
Test Plan:
Make check test logopm.ll
All of test-suite passes at O0/O2 and mips32 r1/r2 with this new change.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: echristo, llvm-commits, aemerson, rfuhler
Differential Revision: http://reviews.llvm.org/D6599
llvm-svn: 231665
Fixing this also exposed a related issue where the landingpad under construction was not
cleaned up when an error was raised, which would cause bad reference errors before the
error could actually be printed.
llvm-svn: 231634
For inner one of nested loops, it is more likely to be a hot loop,
and the runtime check can be promoted out from patch 0001, so the
overhead is less, we can try a doubled threshold to unroll more loops.
llvm-svn: 231632
Runtime unrolling is an expensive optimization which can bring benefit
only if the loop is hot and iteration number is relatively large enough.
For some loops, we know they are not worth to be runtime unrolled.
The scalar loop from vectorization is one of the cases.
llvm-svn: 231631
Runtime unrollng will introduce a runtime check in loop prologue.
If the unrolled loop is a inner loop, then the proglogue will be inside
the outer loop. LICM pass can help to promote the runtime check out if
the checked value is loop invariant.
llvm-svn: 231630
Summary:
See the two test cases.
; Can fold fcmp with undef on one side by choosing NaN for the undef
; Can fold fcmp with undef on both side
; fcmp u_pred undef, undef -> true
; fcmp o_pred undef, undef -> false
; because whatever you choose for the first undef
; you can choose NaN for the other undef
Reviewers: hfinkel, chandlerc, majnemer
Reviewed By: majnemer
Subscribers: majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D7617
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231626
There were cases where the backend computed a wrong permute mask for a VPERM2X128 node.
Example:
\code
define <8 x float> @foo(<8 x float> %a, <8 x float> %b) {
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 undef, i32 undef, i32 6, i32 7, i32 undef, i32 undef, i32 6, i32 7>
ret <8 x float> %shuffle
}
\code end
Before this patch, llc (with -mattr=+avx) emitted the following vperm2f128:
vperm2f128 $0, %ymm0, %ymm0, %ymm0 # ymm0 = ymm0[0,1,0,1]
With this patch, llc emits a vperm2f128 with a correct permute mask:
vperm2f128 $17, %ymm0, %ymm0, %ymm0 # ymm0 = ymm0[2,3,2,3]
Differential Revision: http://reviews.llvm.org/D8119
llvm-svn: 231601
We have an increasing number of cases where we are creating commuted shuffle masks - all implementing nearly the same code.
This patch adds a static helper function - ShuffleVectorSDNode::commuteMask() and replaces a number of cases to use it.
Differential Revision: http://reviews.llvm.org/D8139
llvm-svn: 231581
lib/ExecutionEngine/Targets has no Makefile, causing the autoconf build
to fail. Solve this by bringing the COFF implementation of RuntimeDyld
in line like the Mach-O and ELF implementations.
llvm-svn: 231579
Provide basic support for dynamically loadable coff objects. Only handles a subset of x64 currently.
Patch by Andy Ayers!
Differential Revision: http://reviews.llvm.org/D7793
llvm-svn: 231574
In theory this allows the compiler to skip materializing the array on
the stack. In practice clang often fails to do that, but that's a
different story. NFC.
llvm-svn: 231571
This patch fixes the logic in the DAGCombiner that folds an AND node according
to rule: (and (X (load V)), C) -> (X (load V))
An AND between a vector load 'X' and a constant build_vector 'C' can be folded
into the load itself only if we can prove that the AND operation is redundant.
The algorithm implemented by 'visitAND' firstly computes the splat value 'S'
from C, and then checks if S has the lower 'B' bits set (where B is the size in
bits of the vector element type). The algorithm takes into account also the
'undef' bits in the splat mask.
Unfortunately, the algorithm only worked under the assumption that the size of S
is a multiple of the vector element type. With this patch, we conservatively
avoid folding the AND if the splat bits are not compatible with the vector
element type.
Added X86 test and-load-fold.ll
Differential Revision: http://reviews.llvm.org/D8085
llvm-svn: 231563
libc++. This lets me almost self-host on Linux with libc++ and libc++abi
very simply.
Currently, MCJIT and OrcJIT are failing due to uncaught exceptions, and
the Go binding tests are failing to build due to not linking in the
correct C++ standard library.
llvm-svn: 231560
This will provide the analogous replacements for the PassManagerBuilder
and other code long term. This code is extracted from the opt tool
currently, and I plan to extend it as I build up support for using the
new pass manager in Clang and other places.
Mailing this out for review in part to let folks comment on the terrible names
here. A brief word about why I chose the names I did.
The library is called "Passes" to try and make it clear that it is a high-level
utility and where *all* of the passes come together and are registered in
a common library. I didn't want it to be *limited* to a registry though, the
registry is just one component.
The class is a "PassBuilder" but this name I'm less happy with. It doesn't
build passes in any traditional sense and isn't a Builder-style API at all. The
class is a PassRegisterer or PassAdder, but neither of those really make a lot
of sense. This class is responsible for constructing passes for registry in an
analysis manager or for population of a pass pipeline. If anyone has a better
name, I would love to hear it. The other candidate I looked at was
PassRegistrar, but that doesn't really fit either. There is no register of all
the passes in use, and so I think continuing the "registry" analog outside of
the registry of pass *names* and *types* is a mistake. The objects themselves
are just objects with the new pass manager.
Differential Revision: http://reviews.llvm.org/D8054
llvm-svn: 231556
This patch attempts to convert a SCALAR_TO_VECTOR using an operand from an EXTRACT_VECTOR_ELT into a VECTOR_SHUFFLE.
This prevents many cases of spilling scalar data between the gpr + simd registers.
At present the optimization only accepts cases where there is no TRUNC of the scalar type (i.e. all types must match).
Differential Revision: http://reviews.llvm.org/D8132
llvm-svn: 231554
Doing this gets function's low_pc and global variable's locations right
in the output debug info. It also could get right other attributes
that need to be relocated (in linker terms), but I don't know of any
other than the address attributes.
This doesn't fixup low_pc attributes in compile_unit, lexical_block
or inlined subroutine, nor does it get right high_pc attributes
for function. This will come in a subsequent commit.
llvm-svn: 231544
to disable lane switching if we don't actually have the instruction
set we want to switch to. Models the earlier check above the
conditional for the pass.
The testcase is one that triggered with the assert that's added
as part of the fix, use it to avoid adding a new testcase as it
highlights the same problem.
llvm-svn: 231539
Reference attributes are mainly handled by just creating DIEEntry
attributes for them. There is a special case for DW_FORM_ref_addr
attributes though, because the DIEEntry code needs a DwarfDebug
code to emit them (and we don't have one as we do no CodeGen).
In that case, just use DIEInteger attributes with the right form.
llvm-svn: 231531
The start offset of a linked unit is known before starting to clone
its DIEs. Handling DW_FORM_ref_addr attributes requires that this
offset is set while cloning the unit. Split CompileUnit::computeOffsets()
into setStartOffset() and computeNextUnitOffset() and call them
repsectively before cloning the DIEs and right after.
llvm-svn: 231530
Teach the load store optimizer how to sign extend a result of a load pair when
it helps creating more pairs.
The rational is that loads are more expensive than sign extensions, so if we
gather some in one instruction this is better!
<rdar://problem/20072968>
llvm-svn: 231527
This is based on the following equivalences:
select(C0 & C1, X, Y) <=> select(C0, select(C1, X, Y), Y)
select(C0 | C1, X, Y) <=> select(C0, X, select(C1, X, Y))
Many target cannot perform and/or on the CPU flags and therefore the
right side should be choosen to avoid materializign the i1 flags in an
integer register. If the target can perform this operation efficiently
we normalize to the left form.
Differential Revision: http://reviews.llvm.org/D7622
llvm-svn: 231507
This is in preparation for changing visitSELECT to normalize towards
select(Cond0, select(Cond1, X, Y), Y);
select(Cond0, X, select(Cond1, X, Y)) which perfom an implicit and/or of
the conditions.
The factored function contains all DAGCombine rules which reduce two values
combined by an And/Or operation to a single value. This does not include rules
involving constants as visitSELECT already handles that case.
Differential Revision: http://reviews.llvm.org/D8026
llvm-svn: 231506
The checking for extgotequiv and localgotequiv rely on the emission
order, which is not guaranteed because we use DenseMap to hold the GOT
equivalents. XFAIL this now until I get time to use MapVector and test
out the solution. In the meantime, appease buildbots.
llvm-svn: 231497
-debug-pass is not specified, as the string is only used when dumping pass
information. There is a big cost of determining the name in
ReginBase<Tr>:getNameStr() if the region's entry or exit block doesn't have a
name. This is the case for the Release build, as names are not preserved by the
front-end.
RegionPass is mainly used by Polly, resulting in long compile time for one file
of a customer application with the Release build (1m24s) vs Release+Asserts
build (10s) when Polly is used. With this change, the compile time with the
Release build went down to 8s.
Patch by Sanjin Sijaric <ssijaric@codeaurora.org>!
Phabricator: http://reviews.llvm.org/D8076
llvm-svn: 231485
Multiplication is not dependent on signedness, so just treating
all input ranges as unsigned is not incorrect. However it will cause
overly pessimistic ranges (such as full-set) when used with signed
negative values.
Teach multiply to try to interpret its inputs as both signed and
unsigned, and then to take the most specific (smallest population)
as its result.
llvm-svn: 231483
Add MachO 32-bit (i.e. arm and x86) support for replacing global GOT equivalent
symbol accesses. Unlike 64-bit targets, there's no GOTPCREL relocation, and
access through a non_lazy_symbol_pointers section is used instead.
-- before
_extgotequiv:
.long _extfoo
_delta:
.long _extgotequiv-_delta
-- after
_delta:
.long L_extfoo$non_lazy_ptr-_delta
.section __IMPORT,__pointers,non_lazy_symbol_pointers
L_extfoo$non_lazy_ptr:
.indirect_symbol _extfoo
.long 0
llvm-svn: 231475
Follow up r230264 and add ARM64 support for replacing global GOT
equivalent symbol accesses by references to the GOT entry for the final
symbol instead, example:
-- before
.globl _foo
_foo:
.long 42
.globl _gotequivalent
_gotequivalent:
.quad _foo
.globl _delta
_delta:
.long _gotequivalent-_delta
-- after
.globl _foo
_foo:
.long 42
.globl _delta
Ltmp3:
.long _foo@GOT-Ltmp3
llvm-svn: 231474
Summary:
None of the .set directives can be used before the .module directives. The .set mips0/pop/push were not triggering this constraint.
Also added testing for all the other implemented directives which are supposed to trigger this constraint.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7140
llvm-svn: 231465
Specifically this:
* Prevents an "unused" warning in non-assert builds.
* In that error case return with out removing a child loop instead of
looping forever.
llvm-svn: 231459