Sparse switches with profile info are lowered as weight-balanced BSTs. For
example, if the node weights are {1,1,1,1,1,1000}, the right-most node would
end up in a tree by itself, bringing it closer to the top.
However, a leaf in this BST can contain up to 3 cases, and having a single
case in a leaf node as in the example means the tree might become
unnecessarily high.
This patch adds a heauristic to the pivot selection algorithm that moves more
cases into leaf nodes unless that would lower their rank. It still doesn't
yield the optimal tree in every case, but I believe it's conservatibely correct.
llvm-svn: 240224
Calling operator* on a WeakVH whose Value is null hits undefined
behaviour, since we bind the value to a reference. Instead, go through
`operator Value*` so that we work with the pointer itself.
Found by ubsan.
llvm-svn: 240214
Seems like MSVC doesn't like this:
InstrProf.h(49) : error C2614: 'llvm::InstrProfRecord' : illegal member initialization: 'Hash' is not a base or member
This reverts r240206.
llvm-svn: 240208
This consolidates the logic to read instrprof records into the on disk
hash table's lookup trait and makes us copy the counter data instead
of taking references to it as we read. This will simplify further
changes to the format.
Patch by Betul Buyukkurt.
llvm-svn: 240206
Summary: This adds FindGlobalVariableNamed to ExecutionEngine
(plus implementation in MCJIT), which is an analog of
FindFunctionNamed for GlobalVariables.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10421
llvm-svn: 240202
When a case of INT64_MIN was followed by a case that was greater than
zero, we were overflowing a signed integer here. Since we've sorted
the cases here anyway (and thus currentValue must be greater than
nextValue) it's simple enough to avoid this by using addition rather
than subtraction.
Found by UBSAN on existing tests.
llvm-svn: 240201
Summary:
Since FunctionMap has llvm::Function pointers as keys, the order in
which the traversal happens can differ from run to run, causing spurious
FileCheck failures. Have CallGraph::print sort the CallGraphNodes by
name before printing them.
Reviewers: bogner, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10575
llvm-svn: 240191
If LLVMDebugInfoPDB links against the DIA SDK then the exports file
would contain an INTERFACE_LINK_LIBRARIES property that contained an
absolute path to ``diaguids.lib`` which used a native windows path (interpreted
as escape sequences when LLVMExports.cmake is imported causing
``find_package(LLVM)`` to fail) rather than the correct CMake style path.
llvm-svn: 240181
This patch changes getRelocationAddend to use ErrorOr and considers it an error
to try to get the addend of a REL section.
If, for example, a x86_64 file has a REL section, that file is corrupted and
we should reject it.
Using ErrorOr is not ideal since we check the section type once per relocation
instead of once per section.
Checking once per section would involve getRelocationAddend just asserting and
callers checking the section before iterating over the relocations.
In any case, this is an improvement and includes a test.
llvm-svn: 240176
The ADDITIONAL_HEADER_DIRS command can be used to tell UIs that a given library
owns certain headers. The path for MCParser was missing MC/ in it.
llvm-svn: 240175
There are 3 types of relocations on MachO
* Scattered
* Section based
* Symbol based
On ELF and COFF relocations are symbol based.
We were in the strange situation that we abstracted over two of them. This makes
section based relocations MachO only.
llvm-svn: 240149
This commit implements the initial serialization of machine basic blocks in a
machine function. Only the simple, scalar MBB attributes are serialized. The
reference to LLVM IR's basic block is preserved when that basic block has a name.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10465
llvm-svn: 240145
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
This patch adds initial support for the -fsanitize=kernel-address flag to Clang.
Right now it's quite restricted: only out-of-line instrumentation is supported, globals are not instrumented, some GCC kasan flags are not supported.
Using this patch I am able to build and boot the KASan tree with LLVMLinux patches from github.com/ramosian-glider/kasan/tree/kasan_llvmlinux.
To disable KASan instrumentation for a certain function attribute((no_sanitize("kernel-address"))) can be used.
llvm-svn: 240131
What this does is make all symbols that would otherwise start with a .L
(or L on MachO) unnamed.
Some of these symbols still show up in the symbol table, but we can just
make them unnamed.
In order to make sure we produce identical results when going thought assembly,
all .L (not just the compiler produced ones), are now unnamed.
Running llc on llvm-as.opt.bc, the peak memory usage goes from 208.24MB to
205.57MB.
llvm-svn: 240130
Currently, we canonicalize shuffles that produce a result larger than
their operands with:
shuffle(concat(v1, undef), concat(v2, undef))
->
shuffle(concat(v1, v2), undef)
because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
This is useful in the general case, but there are special cases where
native shuffles produce larger results: the two-result ops.
We can look through the concat when lowering them:
shuffle(concat(v1, v2), undef)
->
concat(VZIP(v1, v2):0, :1)
This lets us generate the native shuffles instead of scalarizing to
dozens of VMOVs.
Differential Revision: http://reviews.llvm.org/D10424
llvm-svn: 240118
In a relocation target can take 3 basic forms
* A r_value in scattered relocations.
* A symbol in external relocations.
* A section is non-external relocations.
Have the dump reflect that. With this change we go from
CHECK-NEXT: Extern: 0
CHECK-NEXT: Type: X86_64_RELOC_SUBTRACTOR (5)
CHECK-NEXT: Symbol: 0x2
CHECK-NEXT: Scattered: 0
To just
// CHECK-NEXT: Type: X86_64_RELOC_SUBTRACTOR (5)
// CHECK-NEXT: Section: __data (2)
Since the relocation is with a section, we print the seciton name and don't
need to say that it is not scattered or external.
Someone motivated can add further special cases for things like
ARM64_RELOC_ADDEND and ARM_RELOC_PAIR.
llvm-svn: 240073
To same compile time, the analysis to find dense case-clusters in switches is
not done at -O0. However, when the whole switch is dense enough, it is easy to
turn it into a jump table, resulting in much faster code with no extra effort.
llvm-svn: 240071
Deduplicates some code and lets us use LEA on atom when adjusting the
stack around callee-cleanup calls. This is the only intended
functionality change.
llvm-svn: 240044
Summary:
Currently intrinsics don't affect the creation of the call graph.
This is not accurate with respect to statepoint and patchpoint
intrinsics -- these do call (or invoke) LLVM level functions.
This change fixes this inconsistency by adding a call to the external
node for call sites that call these non-leaf intrinsics. This coupled
with the fact that these intrinsics also escape the function pointer
they call gives us a conservatively correct call graph.
Reviewers: reames, chandlerc, atrick, pgavlin
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10526
llvm-svn: 240039
They had been getting emitted as a section + offset reference, which
is bogus since the value needs to be the offset within the GOT, not
the actual address of the symbol's object.
Differential Revision: http://reviews.llvm.org/D10441
llvm-svn: 240020
- zext the value to alloc size first, then check if the value repeats
with zero padding included. If so we can still emit a .space
- Do the checking with APInt.isSplat(8), which handles non-pow2 types
- Also handle large constants (bit width > 64)
- In a ConstantArray all elements have the same type, so it's sufficient
to check the first constant recursively and then just compare if all
following constants are the same by pointer compare
llvm-svn: 239977
Added explicit sign extension for v4i16/v8i16 to v4i32/v8i32 before conversion to floats. Matches existing support for v4i8/v8i8.
Follow up to D10433
llvm-svn: 239966
Summary:
This is done by first adding two additional instructions to convert the
alloca returned address to local and convert it back to generic. Then
replace all uses of alloca instruction with the converted generic
address. Then we can rely NVPTXFavorNonGenericAddrSpace pass to combine
the generic addresscast and the corresponding Load, Store, Bitcast, GEP
Instruction together.
Patched by Xuetian Weng (xweng@google.com).
Test Plan: test/CodeGen/NVPTX/lower-alloca.ll
Reviewers: jholewinski, jingyue
Reviewed By: jingyue
Subscribers: meheff, broune, eliben, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D10483
llvm-svn: 239964
MCFragment didn't really need vtables. The majority of virtual methods were just getters and setters.
This removes the vtables and uses dispatch on the kind to do things like delete which needs to
get the appropriate class.
This reduces memory on the verify use list order test case by about 2MB out of 800MB.
Reviewed by Rafael Espíndola
llvm-svn: 239952
There is a one-to-one relationship between X86Subtarget and
X86FrameLowering, but every frame lowering method would previously pull
the subtarget off the MachineFunction and query some subtarget
properties.
Over time, these locals began to grow in complexity and it became
important to keep their names and meaning in sync across all of the
frame lowering methods, leading to duplication. We can eliminate that
duplication by computing them once in the constructor.
llvm-svn: 239948
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
It's been used before to avoid infinite loops caused by separate CGP
optimizations undoing one another. We found one more such issue
caused by r238054. To avoid it, generalize the "InsertedTruncs"
set to any inst, and use it to avoid touching those again.
llvm-svn: 239938
If globals can be unnamed, there is no reason for aliases to be different.
The restriction was there since the original implementation in r36435. I
can only guess it was there because of the old bison parser for the old
alias syntax.
llvm-svn: 239921
Directional labels can show up in symbol tables (and we have a llvm-mc test for
that). Given that, we need to make sure they are named.
With that out of the way, use setUseNamesOnTempLabels in llvm-mc so that it
too benefits from the memory saving.
llvm-svn: 239914
Summary:
This does not include support for the immediate variants of these pseudo-instructions.
Fixes llvm.org/PR20968.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: seanbruno, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D8537
llvm-svn: 239905
Summary:
Call MCSymbolRefExpr::create() with a MCSymbol* argument, not with a StringRef
of the Symbol's name, in order to avoid creating invalid temporary symbols for
relative labels (e.g. {$,.L}tmp00, {$,.L}tmp10 etc.).
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10498
llvm-svn: 239901
Summary:
Previously, MCSymbolRefExpr::create() was called with a StringRef of the symbol
name, which it would then search for in the Symbols StringMap (from MCContext).
However, relative labels (which are temporary symbols) are apparently not stored
in the Symbols StringMap, so we end up creating a new {$,.L}tmp symbol
({$,.L}tmp00, {$,.L}tmp10 etc.) each time we create an MCSymbolRefExpr by
passing in the symbol name as a StringRef.
Fortunately, there is a version of MCSymbolRefExpr::create() which takes an
MCSymbol* and we already have an MCSymbol* at that point, so we can just pass
that in instead of the StringRef.
I also removed the local StringRef calls to MCSymbolRefExpr::create() from
expandMemInst(), as those cases can be handled by evaluateRelocExpr() anyway.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9938
llvm-svn: 239897
Change builtin function name and signature ( add third parameter - rounding mode ).
Added tests for intrinsics.
Differential Revision: http://reviews.llvm.org/D10473
llvm-svn: 239888
names for counts with the word 'Count' to make them less ambiguous.
This will be an actual error if we use unscoped enums for any of these,
and generally this seems much clearer to read.
Also, use clang-format to normalize the formatting of this code which
seems to have been needlessly odd.
No functionality changed here.
llvm-svn: 239887
This is now living in MemoryLocation, which is what it pertains to. It
is also an enum there rather than a static data member which is left
never defined.
llvm-svn: 239886
that it is its own entity in the form of MemoryLocation, and update all
the callers.
This is an entirely mechanical change. References to "Location" within
AA subclases become "MemoryLocation", and elsewhere
"AliasAnalysis::Location" becomes "MemoryLocation". Hope that helps
out-of-tree folks update.
llvm-svn: 239885
virtual interface on AliasAnalysis only deals with ModRef information.
This interface was both computing memory locations by using TLI and
other tricks to estimate the size of memory referenced by an operand,
and computing ModRef information through similar investigations. This
change narrows the scope of the virtual interface on AliasAnalysis
slightly.
Note that all of this code could live in BasicAA, and be done with
a single investigation of the argument, if it weren't for the fact that
the generic code in AliasAnalysis::getModRefBehavior for a callsite
calls into the virtual aspect of (now) getArgModRefInfo. But this
patch's arrangement seems a not terrible way to go for now.
The other interesting wrinkle is how we could reasonably extend LLVM
with support for custom memory location sizes and mod/ref behavior for
library routines. After discussions with Hal on the review, the
conclusion is that this would be best done by fleshing out the much
desired support for extensions to TLI, and support these types of
queries in that interface where we would likely be doing other library
API recognition and analysis.
Differential Revision: http://reviews.llvm.org/D10259
llvm-svn: 239884
The patch triggers a miscompile on SPEC 2006 403.gcc with the (ref)
200.i and scilab.i inputs. I opened PR23866 to track analysis of this.
This reverts commit r238793.
llvm-svn: 239880
Adds static_asserts to ensure alignment of concatenated objects is
correct, and fixes them where they are not.
Also changes the definition of AlignOf to use constexpr, except on
MSVC, to avoid enum comparison warnings from GCC.
(There's not too much of this in llvm itself, most of the fun is in
clang).
This seems to make LLVM actually work without Bus Error on 32bit
sparc.
Differential Revision: http://reviews.llvm.org/D10271
llvm-svn: 239872
Different object formats represent references from dwarf in different ways.
ELF uses a relocation to the referenced point (except for .dwo) and
COFF/MachO use the offset of the referenced point inside its section.
This patch renames emitSectionOffset because
* It doesn't produce an offset on ELF.
* It changes behavior depending on how DWARF is represented, so adding
dwarf to its name is probably a good thing.
The patch also adds an option to force the use of offsets.That avoids
funny looking code like
if (!UseOffsets)
Asm->emitSectionOffset....
It was correct, but read as if the ! was inverted.
llvm-svn: 239866