The original tests have unneeded symbols and copy-relocation-zero-abs-addr.s
does not actually test anything.
Rewrite them and add copy-relocation-zero-addr.s instead.
Add --soname=b so that the address 0x203400 will be stable. (When linking an
executable with %t.so, the path %t.so will be recorded in the DT_NEEDED entry if
%t.so doesn't have DT_SONAME. .dynstr will have varying lengths on different
systems.)
In particular, if the successor block, which is about to get a new
predecessor block, currently only has a single predecessor,
then the bonus instructions will be directly used within said successor,
which is fine, since the block with bonus instructions dominates that
successor. But once there's a new predecessor, the IR is no longer valid,
and we don't fix it, because we only update PHI nodes.
Which means, the live-out bonus instructions must be exclusively used
by the PHI nodes in successor blocks. So we have to form trivial PHI nodes.
which will then be successfully updated to recieve cloned bonus instns.
This all works fine, except for the fact that we don't have access to
the dominator tree, and we don't ignore unreachable code,
so we sometimes do end up having to deal with some weird IR.
Fixes https://bugs.llvm.org/show_bug.cgi?id=48450
Some of the pattern matching in PPCInstrVSX.td and node lowering involving vectors assumes 64bit mode. This patch disables some of the unsafe pattern matching and lowering of BUILD_VECTOR in 32bit mode.
Reviewed By: Xiangling_L
Differential Revision: https://reviews.llvm.org/D92789
CVP currently handles switches by checking an equality predicate
on all edges from predecessor blocks. Of course, this can only
work if the value being switched over is defined in a different block.
Replace this implementation with a call to getPredicateAt(), which
also does the predecessor edge predicate check (if not defined in
the same block), but can also do quite a bit more: It can reason
about phi-nodes by checking edge predicates for incoming values,
it can reason about assumes, and it can reason about block values.
As such, this makes the implementation both simpler and more
powerful. The compile-time impact on CTMark is in the noise.
These cover cases handled by getPredicateAt(), but not by the
current implementation:
* Assumes based on context instruction.
* Value from phi node in same block (using per-pred reasoning).
* Value from non-phi node in same block (using block-val reasoning).
The getPayload/getMask/getPassThrough functions should return values
that could be composed into a masked load/store without any additional
type casts. The previous fix violated that.
Instead, convert scalar mask to a vector right before rescaling.
- Document which processors are supported by which runtimes.
- Add missing mappings for code object V2 note records
Differential Revision: https://reviews.llvm.org/D93016
When printing verification errors for ops with the incorrect number of
operand segments, print the required number as well as the actual
number. Split off from D93005.
Differential Revision: https://reviews.llvm.org/D93145
The last use of isLoop was removed on Apr 29, 2002 in commit
09bbb5c015 as part of an effort to
remove "old induction varaible cannonicalization pass built on top of
interval analysis".
AlignVectors treats all loaded/stored values as vectors of bytes,
and masks as corresponding vectors of booleans, so make getMask
produce a 1-element vector for scalars from the start.
This makes it possible to use update_llc_test_checks to manage tests
that check for incorrect x86 stack offsets. It does not yet modify any
test to make use of this new option.
The ABI demands a data16 prefix for lea in 64-bit LP64 mode, but not in
64-bit ILP32 mode. In both modes this prefix would ordinarily be
ignored, but the instructions may be changed by the linker to
instructions that are affected by the prefix.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D93157
This adds some basic MVE masked load/store costs, notably changing the
cost of legal loads/stores to the MVECostFactor and the cost of
scalarized instructions to 8*NumElts.
Differential Revision: https://reviews.llvm.org/D86538
When it comes to the scalar cost of any predicated block, the loop
vectorizer by default regards this predication as a sign that it is
looking at an if-conversion and divides the scalar cost of the block by
2, assuming it would only be executed half the time. This however makes
no sense if the predication has been introduced to tail predicate the
loop.
Original patch by Anna Welker
Differential Revision: https://reviews.llvm.org/D86452
Background: Call to library arithmetic functions for div is emitted by the
compiler and it set wrong “C” calling convention for calls to these functions,
whereas library functions are declared with `spir_function` calling convention.
InstCombine optimization replaces such calls with “unreachable” instruction.
It looks like clang lacks SPIRABIInfo class which should specify default
calling conventions for “system” function calls. SPIR supports only
SPIR_FUNC and SPIR_KERNEL calling convention.
Reviewers: Erich Keane, Anastasia
Differential Revision: https://reviews.llvm.org/D92721
Currently, the interpreter's context is not updated until a command is executed.
This has resulted in the behavior of SB-interface functions and some commands
depends on previous user actions. The interpreter's context can stay uninitialized,
point to a currently selected target, or point to one of previously selected targets.
This patch removes any usages of CommandInterpreter::UpdateExecutionContext.
CommandInterpreter::HandleCommand* functions still may override context temporarily,
but now they always restore it before exiting. CommandInterpreter saves overriden
contexts to the stack, that makes nesting commands possible.
Added test reproduces one of the issues. Without this fix, the last assertion fails
because interpreter's execution context is empty until running "target list", so,
the value of the global property was updated instead of process's local instance.
Differential Revision: https://reviews.llvm.org/D92164
TargetList::CreateTarget automatically adds created target to the list, however,
CommandObjectTargetCreate does some additional preparation after creating a target
and which can fail. The command should remove created target if it failed. Since
the function has many ways to return, scope guard does this work safely.
Changes to the TargetList make target adding and selection more transparent.
Other changes remove unnecessary SetSelectedTarget after CreateTarget.
Differential Revision: https://reviews.llvm.org/D93052
This introduces more flexible multiclass for declaring two flags controlling the same boolean keypath.
Compared to existing Opt{In,Out}FFlag multiclasses, the new syntax makes it easier to read option declarations and reason about the keypath.
This also makes specifying common properties of both flags possible.
I'm open to suggestions on the class names. Not 100% sure the benefits are worth the added complexity.
Depends on D92774.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D92775
We don't need to always generate `-f[no-]experimental-new-pass-manager`.
This patch does not change the behavior of any other command line flag. (For example `-triple` is still being always generated.)
Reviewed By: dexonsmith, Bigcheese
Differential Revision: https://reviews.llvm.org/D92857
Add more tests of the command line marshalling infrastructure.
The new tests now make a "round-trip": from arguments, to CompilerInvocation instance to arguments again in a single test case.
The TODOs are resolved in a follow-up patch.
Depends on D92830.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D92774
gcov computes the line execution count as the sum of (a) counts from
predecessors on other lines and (b) the sum of loop execution counts of blocks
on the same line (think of loops on one line).
For (b), we use Donald B. Johnson's cycle enumeration algorithm and perform
cycle cancelling for each cycle. This number of candidate cycles were
exponential and D93036 made it polynomial by skipping zero count cycles. The
time complexity is high (O(V*E^2) (it could be O(E^2) but the linear `Blocks`
check made it higher) and the implementation is complex.
We could just identify loops and sum all back edges. However, this requires a
dominator tree construction which is more complex. The time complexity can be
decreased to almost linear, though.
This patch just performs cycle cancelling iteratively. Add two members
`traversable` and `incoming` to GCOVArc. There are 3 states:
* `!traversable`: blocks not on this line or explored blocks
* `traversable && incoming == nullptr`: unexplored blocks
* `traversable && incoming != nullptr`: blocks which are being explored (on the stack)
If an arc points to a block being explored, a cycle has been found.
Let E be the number of arcs. Every time a cycle is found, at least one arc is
saturated (`edgeCount` reduced to 0), so there are at most E cycles. Finding one
cycle takes O(E) time, so the overall time complexity is O(E^2). Note that we
always augment through a back edge and never need to augment its reverse edge so
reverse edges in traditional flow networks are not needed.
Reviewed By: xinhaoyuan
Differential Revision: https://reviews.llvm.org/D93073
Pass on the filesystem error string `FileManager::getFileRef` in
`clang-import-test`'s `ParseSource` function. Also include "error:" and
a newline in the output. As a side effect, migrate to the `FileEntryRef`
overload of `SourceManager::createFileID`.
No real functionality change here, just slightly better output on error.
Differential Revision: https://reviews.llvm.org/D92971
Migrate over to the `FileEntryRef` overloads of
`SourceManager::createFileID` and `overrideFileContents` (using
`getVirtualFileRef`) in `TextDiagnostic`'s `ShowLine` test.
No functionality change.
Differential Revision: https://reviews.llvm.org/D92968
The performance improvement on LBM previously achieved with improved software
prefetching (36d4421) have gone lost recently with e00f189. There now is one
memory access in the loop that LoopDataPrefetch cannot handle (while before
there was none) which the heuristic rejects.
This patch adds a small margin by allowing 1 non-prefetched memory access for
every 32 prefetched ones, so that the heuristic doesn't bail in this type of
case.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D92985
Summary:
"Speculative fix for link failure on bots" with a mention of "the clang-ppc64le-rhel bot fails on link: http://lab.llvm.org:8011/#/builders/57/builds/2307/steps/6/logs/stdio".
PPCAsmPrinter.cpp:(.text._ZN12_GLOBAL__N_116PPCAIXAsmPrinter19emitFunctionBodyEndEv+0x2f8): undefined reference to `llvm::XCOFF::getNameForTracebackTableLanguageId(llvm::XCOFF::TracebackTable::LanguageID)'
PPCAsmPrinter.cpp:(.text._ZN12_GLOBAL__N_116PPCAIXAsmPrinter19emitFunctionBodyEndEv+0x2170): undefined reference to `llvm::XCOFF::parseParmsType(unsigned int, unsigned int)'