Moves iteration lattice/merger code into new SparseTensor/Utils directory. A follow-up CL will add lattice/merger unit tests.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D104757
This commit moves the type translator from LLVM to MLIR to a public header for use by external projects or other code.
Unlike a previous attempt (https://reviews.llvm.org/D104726), this patch moves the type conversion into separate files which remedies the linker error which was only caught by CI.
Differential Revision: https://reviews.llvm.org/D104834
scf::ForOp bufferization analysis proceeds just like for any other op (including FuncOp) at its boundaries; i.e. if:
1. The tensor operand is inplaceable.
2. The matching result has no subsequent read (i.e. all reads dominate the scf::ForOp).
3. In and does not create a RAW interference.
then it can bufferize inplace.
Still there are a few differences:
1. bbArgs for an scf::ForOp are always considered inplaceable when seen from ops inside the body. This is because a) either the matching tensor operand is not inplaceable and an alloc will be inserted (which makes bbArg itself inplaceable); or b) the tensor operand and bbArg are both already inplaceable.
2. Bufferization within the scf::ForOp body has implications to the outside world : the scf.yield terminator may well ping-pong values of the same type. This muddies the water for alias analysis and is not supported atm. Such cases result in a pass failure.
Differential revision: https://reviews.llvm.org/D104490
Add an index_dim annotation to specify the shape to loop mapping of shape-only tensors. A shape-only tensor serves is not accessed withing the body of the operation but is required to span the iteration space of certain operations such as pooling.
Differential Revision: https://reviews.llvm.org/D104767
This test shows how convert-linalg-to-std rewrites named linalg ops as library calls.
This can be coupled with a C++ shim to connect to existing libraries such as https://gist.github.com/nicolasvasilache/691ef992404c49dc9b5d543c4aa6db38.
Everything can then be linked together with mlir-cpu-runner and MLIR can call C++ (which can itself call MLIR if needed).
This should evolve into specific rewrite patterns that can be applied on op instances independently rather than having to use a full conversion.
Differential Revision: https://reviews.llvm.org/D104842
Extend the OpDSL with index attributes. After tensors and scalars, index attributes are the third operand type. An index attribute represents a compile-time constant that is limited to index expressions. A use cases are the strides and dilations defined by convolution and pooling operations.
The patch only updates the OpDSL. The C++ yaml codegen is updated by a followup patch.
Differential Revision: https://reviews.llvm.org/D104711
This includes a basic implementation for the OpenMP target
operation. Currently, the if, thread_limit, private, shared, device, and nowait clauses are included in this implementation.
Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>
Reviewed By: ftynse, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D102816
In cases where arithmetic (addi/muli) ops are performed on an scf.for loops induction variable with a single use, we can fold those ops directly into the scf.for loop.
For example, in the following code:
```
scf.for %i = %c0 to %arg1 step %c1 {
%0 = addi %arg2, %i : index
%1 = muli %0, %c4 : index
%2 = memref.load %arg0[%1] : memref<?xi32>
%3 = muli %2, %2 : i32
memref.store %3, %arg0[%1] : memref<?xi32>
}
```
we can lift `%0` up into the scf.for loop range, as it is the only user of %i:
```
%lb = addi %arg2, %c0 : index
%ub = addi %arg2, %i : index
scf.for %i = %lb to %ub step %c1 {
%1 = muli %0, %c4 : index
%2 = memref.load %arg0[%1] : memref<?xi32>
%3 = muli %2, %2 : i32
memref.store %3, %arg0[%1] : memref<?xi32>
}
```
Reviewed By: mehdi_amini, ftynse, Anthony
Differential Revision: https://reviews.llvm.org/D104289
This commit moves the type translator from LLVM to MLIR to a public header for use by external projects or other code
Differential Revision: https://reviews.llvm.org/D104726
The patch changes the pretty printed FillOp operand order from output, value to value, output. The change is a follow up to https://reviews.llvm.org/D104121 that passes the fill value using a scalar input instead of the former capture semantics.
Differential Revision: https://reviews.llvm.org/D104356
During slice computation of affine loop fusion, detect one id as the mod
of another id w.r.t a constant in a more generic way. Restrictions on
co-efficients of the ids is removed. Also, information from the
previously calculated ids is used for simplification of affine
expressions, e.g.,
If `id1` = `id2`,
`id_n - divisor * id_q - id_r + id1 - id2 = 0`, is simplified to:
`id_n - divisor * id_q - id_r = 0`.
If `c` is a non-zero integer,
`c*id_n - c*divisor * id_q - c*id_r = 0`, is simplified to:
`id_n - divisor * id_q - id_r = 0`.
Reviewed By: bondhugula, ayzhuang
Differential Revision: https://reviews.llvm.org/D104614
Correct a documentation typo, and delete a duplicate test in
`pdl-to-pdl-interp-rewriter.mlir`.
Reviewed By: pr4tgpt, bondhugula, rriddle
Differential Revision: https://reviews.llvm.org/D104688
This revision refactors the usage of multithreaded utilities in MLIR to use a common
thread pool within the MLIR context, in addition to a new utility that makes writing
multi-threaded code in MLIR less error prone. Using a unified thread pool brings about
several advantages:
* Better thread usage and more control
We currently use the static llvm threading utilities, which do not allow multiple
levels of asynchronous scheduling (even if there are open threads). This is due to
how the current TaskGroup structure works, which only allows one truly multithreaded
instance at a time. By having our own ThreadPool we gain more control and flexibility
over our job/thread scheduling, and in a followup can enable threading more parts of
the compiler.
* The static nature of TaskGroup causes issues in certain configurations
Due to the static nature of TaskGroup, there have been quite a few problems related to
destruction that have caused several downstream projects to disable threading. See
D104207 for discussion on some related fallout. By having a ThreadPool scoped to
the context, we don't have to worry about destruction and can ensure that any
additional MLIR thread usage ends when the context is destroyed.
Differential Revision: https://reviews.llvm.org/D104516
Slowly we are moving toward full support of sparse tensor *outputs*. First
step was support for all-dense annotated "sparse" tensors. This step adds
support for truly sparse tensors, but only for operations in which the values
of a tensor change, but not the nonzero structure (this was refered to as
"simply dynamic" in the [Bik96] thesis).
Some background text was posted on discourse:
https://llvm.discourse.group/t/sparse-tensors-in-mlir/3389/25
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D104577
This used to be important for reducing lock contention when accessing identifiers, but
the cost of the cache can be quite large if parsing in a multi-threaded context. After
D104167, the win of keeping a cache is not worth the cost.
Differential Revision: https://reviews.llvm.org/D104737
Operations currently rely on the string name of attributes during attribute lookup/removal/replacement, in build methods, and more. This unfortunately means that some of the most used APIs in MLIR require string comparisons, additional hashing(+mutex locking) to construct Identifiers, and more. This revision remedies this by caching identifiers for all of the attributes of the operation in its corresponding AbstractOperation. Just updating the autogenerated usages brings up to a 15% reduction in compile time, greatly reducing the cost of interacting with the attributes of an operation. This number can grow even higher as we use these methods in handwritten C++ code.
Methods for accessing these cached identifiers are exposed via `<attr-name>AttrName` methods on the derived operation class. Moving forward, users should generally use these methods over raw strings when an attribute name is necessary.
Differential Revision: https://reviews.llvm.org/D104167
The main goal of this commit is to remove the dependency of Standard dialect on the Tensor dialect.
* Rename SubTensorOp -> tensor.extract_slice, SubTensorInsertOp -> tensor.insert_slice.
* Some helper functions are (already) duplicated between the Tensor dialect and the MemRef dialect. To keep this commit smaller, this will be cleaned up in a separate commit.
* Additional dialect dependencies: Shape --> Tensor, Tensor --> Standard
* Remove dialect dependencies: Standard --> Tensor
* Move canonicalization test cases to correct dialect (Tensor/MemRef).
Note: This is a fixed version of https://reviews.llvm.org/D104499, which was reverted due to a missing update to two CMakeFile.txt.
Differential Revision: https://reviews.llvm.org/D104676
Adapt the FillOp definition to use a scalar operand instead of a capture. This patch is a follow up to https://reviews.llvm.org/D104109. As the input operands are in front of the output operands the patch changes the internal operand order of the FillOp. The pretty printed version of the operation remains unchanged though. The patch also adapts the linalg to standard lowering to ensure the c signature of the FillOp remains unchanged as well.
Differential Revision: https://reviews.llvm.org/D104121
TosaMakeBroadcastable needs to include tosa.div, which was added later in the
specification.
Reviewed By: sjarus, NatashaKnk
Differential Revision: https://reviews.llvm.org/D104157
The approximation relays on range reduced version y \in [0, pi/2]. An input x will have
the property that sin(x) = sin(y), -sin(y), cos(y), -cos(y) depends on which quadrable x
is in, where sin(y) and cos(y) are approximated with 5th degree polynomial (of x^2).
As a result a single pattern can be used to compute approximation for both sine and cosine.
Reviewed By: ezhulenev
Differential Revision: https://reviews.llvm.org/D104582
The main goal of this commit is to remove the dependency of Standard dialect on the Tensor dialect.
* Rename ops: SubTensorOp --> ExtractTensorOp, SubTensorInsertOp --> InsertTensorOp
* Some helper functions are (already) duplicated between the Tensor dialect and the MemRef dialect. To keep this commit smaller, this will be cleaned up in a separate commit.
* Additional dialect dependencies: Shape --> Tensor, Tensor --> Standard
* Remove dialect dependencies: Standard --> Tensor
* Move canonicalization test cases to correct dialect (Tensor/MemRef).
Differential Revision: https://reviews.llvm.org/D104499
Redirect the copy ctor to the actual class instead of
overwriting it with `TypeID` based ctor.
This allows the final Pass classes to have extra fields and logic for their copy.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D104302
* Remove dependency: Standard --> MemRef
* Add dependencies: GPUToNVVMTransforms --> MemRef, Linalg --> MemRef, MemRef --> Tensor
* Note: The `subtensor_insert_propagate_dest_cast` test case in MemRef/canonicalize.mlir will be moved to Tensor/canonicalize.mlir in a subsequent commit, which moves over the remaining Tensor ops from the Standard dialect to the Tensor dialect.
Differential Revision: https://reviews.llvm.org/D104506