Patch by Stefan Schmidt.
This adds the /filealign parameter to lld, which allows to specify the
section alignment in the output file (as it does on Microsoft's
link.exe).
This is required to be able to load dynamically linked libraries on the
original Xbox, where the debugger monitor expects the section alignment
in the file to be the same as in memory.
llvm-svn: 361634
This only needs to be done for MergeChunks, so just do that in a
separate pass in the Writer.
This is one small step towards eliminating the vtable in Chunk.
llvm-svn: 361573
The previous patch lost the call to PowerOf2Ceil, which causes LLD to
crash when handling common symbols with a non-power-of-2 size. I tweaked
the existing common.test to make the bsspad16 common symbol be 15 bytes
to add coverage for this case.
llvm-svn: 361426
Summary:
Valid section or chunk alignments are powers of 2 in the range [1,
8192]. These can be stored more canonically in log2 form to free up some
bits in Chunk. Combined with D61696, SectionChunk gets 8 bytes smaller.
Reviewers: ruiu, aganea
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61698
llvm-svn: 361206
Summary:
Prior to this change, every implementation of writeTo would add
OutputSectionOff to the output section buffer start before writing data.
Instead, do this math in the caller, so that it can be written once
instead of many times.
The output section offset is always equivalent to the difference between
the chunk RVA and the output section RVA, so we can replace the one
remaining usage of OutputSectionOff with that subtraction.
This doesn't change the size of SectionChunk because of alignment
requirements, but I will rearrange the fields in a follow-up change to
accomplish that.
Reviewers: ruiu, aganea
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61696
llvm-svn: 360376
SectionChunk is one of the most frequently allocated data structures in
LLD, since there are about four per function when optimizations and
debug info are enabled (.text, .pdata, .xdata, .debug$S).
A PE COFF file cannot be larger than 2GB, so there is an inherent limit
on the length of the section name and the number of relocations.
Decompose the ArrayRef and StringRef into pointer and size, and put them
back together in the accessors for section name and relocation list.
I plan to gather complete performance numbers later by padding
SectionChunk with dead data and measuring performance after all the size
optimizations are done.
llvm-svn: 359923
r191276 added this to old LLD, but it never made it to new LLD -- except
that the flag was in Options.td, so it was silently ignored. I figured
it should be easy to implement, so I did that instead of removing the
flags from Options.td.
I then discovered that link.exe also supports comma-separated lists of
'cd' and 'net', which made the parsing code a bit annoying.
The Alias technique in Options.td is to get nice help output.
Differential Revision: https://reviews.llvm.org/D61067
llvm-svn: 359192
Make some small adjustment while touching the code: make parameters
const, use less_first(), etc.
Differential Revision: https://reviews.llvm.org/D60989
llvm-svn: 358943
Generate import modules for each imported DLL, along with its symbol stream.
Also create COFF groups in the * Linker * module, one for each PartialSection (input, unmerged sections)
Currently COFF groups are disabled for MINGW because it significantly increases PDB sizes. We could enable that later with an option.
The overall objective for this change is to support code hot patching tools. Such tools need to know the import libraries used, from the PDB alone.
Differential Revision: https://reviews.llvm.org/D54802
llvm-svn: 357308
Summary:
This avoids allocating O(#relocs) of intermediate data for each section
when range extension thunks aren't needed for that section. This also
removes a std::vector from SectionChunk, which further reduces its size.
Instead, this change adds the range extension thunk symbols to the
object files that contain sections that need extension thunks. By adding
them to the symbol table of the parent object, that means they now have
a symbol table index. Then we can then modify the original relocation,
after copying it to read-write memory, to use the new symbol table
index.
This makes linking browser_tests.exe with no PDB 10.46% faster, moving
it from 11.364s to 10.288s averaged over five runs.
Reviewers: mstorsjo, ruiu
Subscribers: aganea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59902
llvm-svn: 357200
For MinGW, unique partial sections are much more common, e.g.
comdat functions get sections named e.g. text$symbol.
A moderate sized example of this contains over 200K Chunks
which create 174K unique PartialSections. Prior to SVN r352928
(D57574), linking this took around 1,5 seconds for me, while
it afterwards takes around 13 minutes. After this patch, the
linking time is back to what it was before.
The std::find_if in findPartialSection will do a linear scan of
the whole container until a match is found. To use something like
binary_search or the std::set container's own methods, we'd need
to already have a PartialSection*.
Reinstate a proper map instead of having a set with a custom sorting
comparator.
Differential Revision: https://reviews.llvm.org/D57666
llvm-svn: 353146
On ARM64, this is normally necessary only after a module exceeds
128 MB in size (while the limit for thumb is 16 MB). For conditional
branches, the range limit is only 1 MB though (the same as for thumb),
and for the tbz instruction, the range is only 32 KB, which allows for
a test much smaller than the full 128 MB.
This fixes PR40467.
Differential Revision: https://reviews.llvm.org/D57575
llvm-svn: 352929
When writing a PDB, the OutputSection of all chunks need to be set.
The thunks are added directly to OutputSection after the normal
machinery that sets it for all other chunks.
This fixes part of PR40467.
Differential Revision: https://reviews.llvm.org/D57574
llvm-svn: 352928
Persist (input) sections that make up an OutputSection. This is a supporting patch for the upcoming D54802.
Differential Revision: https://reviews.llvm.org/D55293
llvm-svn: 352336
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The number of sections is used in assignAddresses (in
finalizeAddresses) and the space for all sections is permanent from
that point on, even if we later decide we won't write some of them.
The VirtualSize field also gets calculated in assignAddresses, so we
need to manually check whether the section is empty here instead.
Differential Revision: https://reviews.llvm.org/D54495
llvm-svn: 347704
GNU ld, which doesn't generate PDBs, can optionally generate a
build id by passing the --build-id option. LLD's MinGW frontend knows
about this option but ignores it, as I had falsely assumed that LLD
already generated build IDs even in those cases.
If debug info is requested and no PDB path is set, generate a
build id signature as a hash of the binary itself. This allows
associating a binary to a minidump, even if debug info isn't
written in PDB form by the linker.
Differential Revision: https://reviews.llvm.org/D54828
llvm-svn: 347645
Summary:
MSVC does this, and we should to.
The .gfids table is a table of RVAs, so it's impossible for a DLL to
indicate that an imported symbol is address taken. Therefore, exports
appear to be listed as address taken by the DLL that exports them.
This fixes an issue that Firefox ran into here:
https://bugzilla.mozilla.org/show_bug.cgi?id=1485016#c12
In Firefox, the export directive came from a .def file, but we need to
do this for any kind of export.
Reviewers: dmajor, hans, amccarth, alex
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54723
llvm-svn: 347623
(patch by Benoit Rousseau)
This patch fixes a bug where the global variable initializers were sometimes not invoked in the correct order when it involved a C++ template instantiation.
Differential Revision: https://reviews.llvm.org/D52749
llvm-svn: 343847
This is a feature that MS link.exe lacks; it currently errors out on
such relocations, just like lld did before.
This allows linking clang.exe for ARM - practically, any image over
16 MB will likely run into the issue.
Differential Revision: https://reviews.llvm.org/D52156
llvm-svn: 342962
GNU binutils import libraries aren't the same kind of short import
libraries as link.exe and LLD produce, but are a plain static library
containing .idata section chunks. MSVC link.exe can successfully link
to them.
In order for imports from GNU import libraries to mix properly with the
normal import chunks, the chunks from the existing mechanism needs to
be added into named sections like .idata$2.
These GNU import libraries consist of one header object, a number of
object files, one for each imported function/variable, and one trailer.
Within the import libraries, the object files are ordered alphabetically
in this order. The chunks stemming from these libraries have to be
grouped by what library they originate from and sorted, to make sure
the section chunks for headers and trailers for the lists are ordered
as intended. This is done on all sections named .idata$*, before adding
the synthesized chunks to them.
Differential Revision: https://reviews.llvm.org/D38513
llvm-svn: 342777
Previously, lld-link would use a random byte sequence as the PDB GUID. Instead,
use a hash of the PDB file contents.
To not disturb llvm-pdbutil pdb2yaml, the hash generation is an opt-in feature
on InfoStreamBuilder and ldb/COFF/PDB.cpp always sets it.
Since writing the PDB computes this ID which also goes in the exe, the PDB
writing code now must be called before writeBuildId(). writeBuildId() for that
reason is no longer included in the "Code Layout" timer.
Since the PDB GUID is now a function of the PDB contents, the PDB Age is always
set to 1. There was a long comment above loadExistingBuildId (now gone) about
how not changing the GUID and only incrementing the age was important, but
according to the discussion in PR35914 that comment was incorrect.
Differential Revision: https://reviews.llvm.org/D51956
llvm-svn: 342334
MinGW uses these kind of list terminator symbols for traversing
the constructor/destructor lists. These list terminators are
actual pointers entries in the lists, with the values 0 and
(uintptr_t)-1 (instead of just symbols pointing to the start/end
of the list).
(This mechanism exists in both the mingw-w64 crt startup code and
in libgcc; normally the mingw-w64 one is used, but a DLL build of
libgcc uses the libgcc one. Therefore it's not trivial to change
the mechanism without lots of cross-project synchronization and
potentially invalidating some combinations of old/new versions
of them.)
When mingw-w64 has been used with lld so far, the CRT startup object
files have so far provided these symbols, ending up with different,
incompatible builds of the CRT startup object files depending on
whether binutils or lld are going to be used.
In order to avoid the need of different configuration of the CRT startup
object files depending on what linker to be used, provide these symbols
in lld instead. (Mingw-w64 checks at build time whether the linker
provides these symbols or not.) This unifies this particular detail
between the two linkers.
This does disallow the use of the very latest lld with older versions
of mingw-w64 (the configure check for the list was added recently;
earlier it simply checked whether the CRT was built with gcc or clang),
and requires rebuilding the mingw-w64 CRT. But the number of users of
lld+mingw still is low enough that such a change should be tolerable,
and unifies this aspect of the toolchains, easing interoperability
between the toolchains for the future.
The actual test for this feature is added in ctors_dtors_priority.s,
but a number of other tests that checked absolute output addresses
are updated.
Differential Revision: https://reviews.llvm.org/D52053
llvm-svn: 342294
When declaring the pair variable as "auto Pair : Map", it is
effectively declared as
std::pair<std::pair<StringRef, uint32_t>, std::vector<Chunk *>>.
This effectively does a full, shallow copy of the Chunk vector,
just to be thrown away after each iteration.
Differential Revision: https://reviews.llvm.org/D52051
llvm-svn: 342205
If the coff timestamp is set to a hash, like lld-link does if /Brepro is
passed, the coff spec suggests that a IMAGE_DEBUG_TYPE_REPRO entry is in the
debug directory. This lets lld-link write such a section.
Fixes PR38429, see bug for details.
Differential Revision: https://reviews.llvm.org/D51652
llvm-svn: 341486
After fixing up the runtime pseudo relocation, the .refptr.<var>
will be a plain pointer with the same value as the IAT entry itself.
To save a little binary size and reduce the number of runtime pseudo
relocations, redirect references to the IAT entry (via the __imp_<var>
symbol) itself and discard the .refptr.<var> chunk (as long as the
same section chunk doesn't contain anything else than the single
pointer).
As there are now cases for both setting the Live variable to true
and false externally, remove the accessors and setters and just make
the variable public instead.
Differential Revision: https://reviews.llvm.org/D51456
llvm-svn: 341175
Normally, in order to reference exported data symbols from a different
DLL, the declarations need to have the dllimport attribute, in order to
use the __imp_<var> symbol (which contains an address to the actual
variable) instead of the variable itself directly. This isn't an issue
in the same way for functions, since any reference to the function without
the dllimport attribute will end up as a reference to a thunk which loads
the actual target function from the import address table (IAT).
GNU ld, in MinGW environments, supports automatically importing data
symbols from DLLs, even if the references didn't have the appropriate
dllimport attribute. Since the PE/COFF format doesn't support the kind
of relocations that this would require, the MinGW's CRT startup code
has an custom framework of their own for manually fixing the missing
relocations once module is loaded and the target addresses in the IAT
are known.
For this to work, the linker (originall in GNU ld) creates a list of
remaining references needing fixup, which the runtime processes on
startup before handing over control to user code.
While this feature is rather controversial, it's one of the main features
allowing unix style libraries to be used on windows without any extra
porting effort.
Some sort of automatic fixing of data imports is also necessary for the
itanium C++ ABI on windows (as clang implements it right now) for importing
vtable pointers in certain cases, see D43184 for some discussion on that.
The runtime pseudo relocation handler supports 8/16/32/64 bit addresses,
either PC relative references (like IMAGE_REL_*_REL32*) or absolute
references (IMAGE_REL_AMD64_ADDR32, IMAGE_REL_AMD64_ADDR32,
IMAGE_REL_I386_DIR32). On linking, the relocation is handled as a
relocation against the corresponding IAT slot. For the absolute references,
a normal base relocation is created, to update the embedded address
in case the image is loaded at a different address.
The list of runtime pseudo relocations contains the RVA of the
imported symbol (the IAT slot), the RVA of the location the relocation
should be applied to, and a size of the memory location. When the
relocations are fixed at runtime, the difference between the actual
IAT slot value and the IAT slot address is added to the reference,
doing the right thing for both absolute and relative references.
With this patch alone, things work fine for i386 binaries, and mostly
for x86_64 binaries, with feature parity with GNU ld. Despite this,
there are a few gotchas:
- References to data from within code works fine on both x86 architectures,
since their relocations consist of plain 32 or 64 bit absolute/relative
references. On ARM and AArch64, references to data doesn't consist of
a plain 32 or 64 bit embedded address or offset in the code. On ARMNT,
it's usually a MOVW+MOVT instruction pair represented by a
IMAGE_REL_ARM_MOV32T relocation, each instruction containing 16 bit of
the target address), on AArch64, it's usually an ADRP+ADD/LDR/STR
instruction pair with an even more complex encoding, storing a PC
relative address (with a range of +/- 4 GB). This could theoretically
be remedied by extending the runtime pseudo relocation handler with new
relocation types, to support these instruction encodings. This isn't an
issue for GCC/GNU ld since they don't support windows on ARMNT/AArch64.
- For x86_64, if references in code are encoded as 32 bit PC relative
offsets, the runtime relocation will fail if the target turns out to be
out of range for a 32 bit offset.
- Fixing up the relocations at runtime requires making sections writable
if necessary, with the VirtualProtect function. In Windows Store/UWP apps,
this function is forbidden.
These limitations are addressed by a few later patches in lld and
llvm.
Differential Revision: https://reviews.llvm.org/D50917
llvm-svn: 340726
link.exe ignores REL32 relocations on 32-bit x86, as well as relocations
against non-function symbols such as labels. This makes lld do the same.
Differential Revision: https://reviews.llvm.org/D50430
llvm-svn: 339345
If a binary is stripped, which can remove discardable sections (except
for the .reloc section, which also is marked as discardable as it isn't
loaded at runtime, only read by the loader), the .reloc section should
be first of them, in order not to create gaps in the image.
Previously, binaries with relocations were broken if they were stripped
by GNU binutils strip. Trying to execute such binaries produces an error
about "xx is not a valid win32 application".
This fixes GNU binutils bug 23348.
Prior to SVN r329370 (which didn't intend to have functional changes),
the code for moving discardable sections to the end didn't clearly
express how other discardable sections should be ordered compared to
.reloc, but the change retained the exact same end result as before.
After SVN r329370, the code (and comments) more clearly indicate that
it tries to make the .reloc section the absolutely last one; this patch
changes that.
This matches how GNU binutils ld sorts .reloc compared to dwarf debug
info sections.
Differential Revision: https://reviews.llvm.org/D49351
Signed-off-by: Martin Storsjö <martin@martin.st>
llvm-svn: 337598
For dwarf debug info, an executable normally either contains the debug
info, or it is stripped out. To reduce the storage needed (slightly)
for the debug info kept separately from the released, stripped binaries,
one can choose to only copy the debug data from the original executable
(essentially the reverse of the strip operation), producing a file with
only debug info.
When copying the debug data from an executable with GNU objcopy,
the build id and debug directory need to reside in a separate section,
as this will be kept while the rest of the .rdata section is removed.
Differential Revision: https://reviews.llvm.org/D49352
llvm-svn: 337526
Dwarf debug info contains some data that contains absolute addresses.
Since these sections are discardable and aren't loaded at runtime,
there's no point in adding base relocations for them.
This makes sure that after stripping out dwarf debug info, there are no
base relocations that point to nonexistent sections.
Differential Revision: https://reviews.llvm.org/D49350
llvm-svn: 337438
Some Microsoft tools (e.g. new versions of WPA) fail when the
COFF Debug Directory contains a path to the PDB that contains
dots, such as D:\foo\./bar.pdb. Remove dots before writing this
path.
This fixes pr38126.
llvm-svn: 336873
Future symbol insertions can potentially change the type of these
symbols - keep pointers to the base class to reflect this, and
use dynamic casts to inspect them before using as the subclass
type.
This fixes crashes that were possible before, by touching these
symbols that now are populated as e.g. a DefinedRegular, via
the old pointers with DefinedImportThunk type.
Differential Revision: https://reviews.llvm.org/D48953
llvm-svn: 336652
With this set, we retain the symbol table, but skip the actual debug
information.
This is meant to be used by the MinGW frontend.
Differential Revision: https://reviews.llvm.org/D48745
llvm-svn: 335946
Summary:
Control flow guard works best when targets it checks are 16-byte aligned.
Microsoft's link.exe helps ensure this by aligning code from sections
that are referenced from the gfids table to 16 bytes when linking with
-guard:cf, even if the original section specifies a smaller alignment.
This change implements that behavior in lld-link.
See https://crbug.com/857012 for more details.
Reviewers: ruiu, hans, thakis, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48690
llvm-svn: 335864
When running with linker GC (`-opt:ref`), defined imported symbols that
are referenced but then dropped by GC end up with their `Location`
member being nullptr, which means `getChunk()` returns nullptr for them
and attempting to call `getChunk()->getOutputSection()` causes a crash
from the nullptr dereference. Check for `getChunk()` being nullptr and
bail out early to avoid the crash.
Differential Revision: https://reviews.llvm.org/D48092
llvm-svn: 334548
Peter Collingbourne suggested moving the switch to the top of the
function, so that all the code that cares about the output section for a
symbol is in the same place.
Differential Revision: https://reviews.llvm.org/D47497
llvm-svn: 333472
Rather than using a loop to compare symbol RVAs to the starting RVAs of
sections to determine which section a symbol belongs to, just get the
output section of a symbol directly via its chunk, and bail if the
symbol doesn't have an output section, which avoids having to hardcode
logic for handling dead symbols, CodeView symbols, etc. This was
suggested by Reid Kleckner; thank you.
This also fixes writing out symbol tables in the presence of RVA table
input sections (e.g. .sxdata and .gfids). Such sections aren't written
to the output file directly, so their RVA is 0, and the loop would thus
fail to find an output section for them, resulting in a segfault. Extend
some existing tests to cover this case.
Fixes PR37584.
Differential Revision: https://reviews.llvm.org/D47391
llvm-svn: 333450
Previously we would always write a hash of the binary into the
PE file, for reproducible builds. This breaks AppCompat, which
is a feature of Windows that relies on the timestamp in the PE
header being set to a real value (or at the very least, a value
that satisfies certain properties).
To address this, we put the old behavior of writing the hash
behind the /Brepro flag, which mimics MSVC linker behavior. We
also match MSVC default behavior, which is to write an actual
timestamp to the PE header. Finally, we add the /TIMESTAMP
option (an lld extension) so that the user can specify the exact
value to be used in case he/she manually constructs a value which
is both reproducible and satisfies AppCompat.
Differential Revision: https://reviews.llvm.org/D46966
llvm-svn: 332613
This is what link.exe does and lets us avoid needing to worry about
merging output characteristics while adding input sections to output
sections.
With this change we can't process /merge in the same way as before
because sections with different output characteristics can still
be merged into one another. So this change moves the processing of
/merge to just before we assign addresses. In the case where there
are multiple output sections with the same name, link.exe only merges
the first section with the source name into the first section with
the target name, and we do the same.
At the same time I also implemented transitive merging (which means
that /merge:.c=.b /merge:.b=.a merges both .c and .b into .a).
This isn't quite enough though because link.exe has a special case for
.CRT in 32-bit mode: it processes sections whose output characteristics
are DATA | R | W as though the output characteristics were DATA | R
(so that they get merged into things like constructor lists in the
expected way). Chromium has a few such sections, and it turns out
that those sections were causing the problem that resulted in r318699
(merge .xdata into .rdata) being reverted: because of the previous
permission merging semantics, the .CRT sections were causing the entire
.rdata section to become writable, which caused the SEH runtime to
crash because it apparently requires .xdata to be read-only. This
change also implements the same special case.
This should unblock being able to merge .xdata into .rdata by default,
as well as .bss into .data, both of which will be done in followups.
Differential Revision: https://reviews.llvm.org/D45801
llvm-svn: 330479
In an upcoming change I will need to make a distinction between section
type (code, data, bss) and permissions. The term that I use for both
of these things is "output characteristics".
Differential Revision: https://reviews.llvm.org/D45799
llvm-svn: 330361
Summary:
DLLs and executables with no exception handlers need to be marked with
IMAGE_DLL_CHARACTERISTICS_NO_SEH, even if they have a load config.
Discovered here when building Chromium with LLD on Windows:
https://crbug.com/833951
Reviewers: ruiu, mstorsjo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45778
llvm-svn: 330300
I needed to revert r330223 because we were embedding an absolute PDB
path in the .rdata section, which ended up being laid out before the
.idata section and affecting its RVAs. This flag will let us control
the embedded path.
Differential Revision: https://reviews.llvm.org/D45747
llvm-svn: 330232
With this, all output sections are created in one place. This will make
it simpler to implement merging of builtin sections.
Differential Revision: https://reviews.llvm.org/D45349
llvm-svn: 329370
One place where this seems to matter is to make sure the .rsrc section comes
after .text. The Win32 UpdateResource() function can change the contents of
.rsrc. It will move the sections that come after, but if .text gets moved, the
entry point header will not get updated and the executable breaks. This was
found by a test in Chromium.
Differential Revision: https://reviews.llvm.org/D45260
llvm-svn: 329221
Reid pointed out the string table for supporting long section names is a
BFD extension and the comments should reflect that. Explicitly spell out
link.exe's and binutil's behavior around section names and the rationale
for LLD's behavior.
Differential Revision: https://reviews.llvm.org/D42659
llvm-svn: 327736
In COFF, duplicate string literals are merged by placing them in a
comdat whose leader symbol name contains a specific prefix followed
by the hash and partial contents of the string literal. This gives
us an easy way to identify sections containing string literals in
the linker: check for leader symbol names with the given prefix.
Any sections that are identified in this way as containing string
literals may be tail merged. We do so using the StringTableBuilder
class, which is also used to tail merge string literals in the ELF
linker. Tail merging is enabled only if ICF is enabled, as this
provides a signal as to whether the user cares about binary size.
Differential Revision: https://reviews.llvm.org/D44504
llvm-svn: 327668
This makes the design a little more similar to the ELF linker and
should allow for features such as ARM range extension thunks to be
implemented more easily.
Differential Revision: https://reviews.llvm.org/D44501
llvm-svn: 327667
This fixes the broken tests that were causing failures. The tests
before were verifying that the time stamp was 0, but now that we
are actually writing a timestamp, I just removed the match against
the timestamp value.
llvm-svn: 327049
Windows tools treats the timestamp fields as sort of a build id,
using it to archive executables on a symbol server, as well as
for matching executables to PDBs. We were writing 0 for these
fields, which would cause symbol servers to break as they are
indexed in the symbol server based on this value.
Although the field is called timestamp, it can really be any
value that is unique per build, so to support reproducible builds
we use a hash of the executable here.
Differential Revision: https://reviews.llvm.org/D43978
llvm-svn: 326920
Summary:
This protects calls to longjmp from transferring control to arbitrary
program points. Instead, longjmp calls are limited to the set of
registered setjmp return addresses.
This also implements /guard:nolongjmp to allow users to link in object
files that call setjmp that weren't compiled with /guard:cf. In this
case, the linker will approximate the set of address taken functions,
but it will leave longjmp unprotected.
I used the following program to test, compiling it with different -guard
flags:
$ cl -c t.c -guard:cf
$ lld-link t.obj -guard:cf
#include <setjmp.h>
#include <stdio.h>
jmp_buf buf;
void g() {
printf("before longjmp\n");
fflush(stdout);
longjmp(buf, 1);
}
void f() {
if (setjmp(buf)) {
printf("setjmp returned non-zero\n");
return;
}
g();
}
int main() {
f();
printf("hello world\n");
}
In particular, the program aborts when the code is compiled *without*
-guard:cf and linked with -guard:cf. That indicates that longjmps are
protected.
Reviewers: ruiu, inglorion, amccarth
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43217
llvm-svn: 325047
Summary:
This patch adds some initial support for Windows control flow guard. At
the end of the day, the linker needs to synthesize a table of RVAs very
similar to the structured exception handler table (/safeseh).
Both /safeseh and /guard:cf take sections of symbol table indices
(.sxdata and .gfids$y) and turn them into RVA tables referenced by the
load config struct in the CRT through special symbols.
Reviewers: ruiu, amccarth
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42592
llvm-svn: 324306
In my experimentation with link.exe from both VS 2015 and 2017, it
always produces images with truncated section names. Update the comment
accordingly.
Differential Revision: https://reviews.llvm.org/D42603
llvm-svn: 323598
With the /order option, you can give an order file. An order file
contains symbol names, one per line, and the linker places comdat
sections in that given order. The option is used often to optimize
an output binary for (in particular, startup) speed by improving
locality.
Differential Revision: https://reviews.llvm.org/D42598
llvm-svn: 323579
The classes used to print and update time information are in
common, so other linkers could use this as well if desired.
Differential Revision: https://reviews.llvm.org/D41915
llvm-svn: 322736
Patch by Colden Cullen.
Currently, when a large PE (>4 GiB) is to be produced, a crash occurs
because:
1. Calling setOffset with a number greater than UINT32_MAX causes the
PointerToRawData to overflow
2. When adding the symbol table to the end of the file, the last section's
offset was used to calculate file size. Because this had overflowed,
this number was too low, and the file created would not be large enough.
This lead to the actual crash I saw, which was a buffer overrun.
This change:
1. Adds comment to setOffset, clarifying that overflow can occur, but it's
somewhat safe because the error will be handled elsewhere
2. Adds file size check after all output data has been created This matches
the MS link.exe error, which looks prints as: "LINK : fatal error
LNK1248: image size (10000EFC9) exceeds maximum allowable size
(FFFFFFFF)"
3. Changes calculate of the symbol table offset to just use the existing
FileSize. This should match the previous calculations, but doesn't rely
on the use of a u32 that can overflow.
4. Removes trivial usage of a magic number that bugged me while I was
debugging the issue
I'm not sure how to add a test for this outside of adding 4GB of object
files to the repo. If there's an easier way, let me know and I'll be
happy to add a test.
Differential Revision: https://reviews.llvm.org/D42010
llvm-svn: 322605
This works for linking the output from the MSVC compiler.
The pdata entries for arm64 seem to be 8 bytes in the same
(or at least similar) form to arm.
Differential Revision: https://reviews.llvm.org/D41160
llvm-svn: 320676
This patch is to rename check CHECK and make it a C macro, so that
we can evaluate the second argument lazily.
Differential Revision: https://reviews.llvm.org/D40915
llvm-svn: 319974
Instead of building intermediate sets of exception handlers for each
object file, just create one for the final output file.
Differential Revision: https://reviews.llvm.org/D40581
llvm-svn: 319244
This allows grouping all sections like ".ctors.12345" into ".ctors".
For MinGW, the numerical values for such ctors are all zero-padded,
so a lexical sort is good enough.
Differential Revision: https://reviews.llvm.org/D40408
llvm-svn: 319151
This effectively reverts r318548 and r318635 while keeping the
functionality behind the flag and preserving the bug fix from r318548.
Differential Revision: https://reviews.llvm.org/D40264
llvm-svn: 318721
Now that our support for PDB emission is reasonably good, there is
no longer a need to emit a COFF symbol table.
Also fix a bug where we would fail to emit a string table for long
section names if /debug was not specified.
Differential Revision: https://reviews.llvm.org/D40189
llvm-svn: 318548
Sections that will be mapped at runtime will only have the short
section name available, since the string table it points into isn't
mapped. Therefore prefer truncating those names over writing a
long name that is unavailable at runtime.
This allows libunwind to find the .eh_frame section at runtime even
if the module was built with debug info enabled.
Differential Revision: https://reviews.llvm.org/D40025
llvm-svn: 318391
Summary:
We previously assumed that all SafeSEH handlers are
DefinedRegular symbols. This is not the case for handlers defined in
DLLs. As a result, we were failing to emit entries in the SafeSEH
table for those handlers. This change fixes that.
Fixes PR35324.
Reviewers: rnk, ruiu
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40102
llvm-svn: 318364
Even if we don't actually write any string table contents, the
4 byte size for the string table will always be written. Make
sure we accommodate for this in the file size. Since this size
is aligned up, this would seldom be an issue in practice.
Differential Revision: https://reviews.llvm.org/D39891
llvm-svn: 318284
Summary:
__safe_se_handler_base should be either absolute 0 (when no SafeSEH
table is present), or relative to the image base (when the table is
present). An earlier change inadvertedly made the symbol absolute in
both cases, leading to the SafeSEH table not being locatble at run
time. This change fixes that and updates the safeseh test to check for
the presence of the relocation.
Reviewers: rnk, ruiu
Reviewed By: ruiu
Subscribers: ruiu, llvm-commits
Differential Revision: https://reviews.llvm.org/D39765
llvm-svn: 317635
Now that we have only SymbolBody as the symbol class. So, "SymbolBody"
is a bit strange name now. This is a mechanical change generated by
perl -i -pe s/SymbolBody/Symbol/g $(git grep -l SymbolBody lld/ELF lld/COFF)
nd clang-format-diff.
Differential Revision: https://reviews.llvm.org/D39459
llvm-svn: 317370
IIUC, SizeOfImage is the distance from the end of the last section to
the image base, rounded up to the page size. So the previous code is
wrong.
Should fix https://bugs.llvm.org/show_bug.cgi?id=34949
(It is nice to know that lld is already being used to create Putty
distribution binaries.)
llvm-svn: 316626
Summary:
The COFF linker and the ELF linker have long had similar but separate
Error.h and Error.cpp files to implement error handling. This change
introduces new error handling code in Common/ErrorHandler.h, changes the
COFF and ELF linkers to use it, and removes the old, separate
implementations.
Reviewers: ruiu
Reviewed By: ruiu
Subscribers: smeenai, jyknight, emaste, sdardis, nemanjai, nhaehnle, mgorny, javed.absar, kbarton, fedor.sergeev, llvm-commits
Differential Revision: https://reviews.llvm.org/D39259
llvm-svn: 316624
Sections are limited to 4 GiB. Error out early if a section exceeds this
size, rather than overflowing the section size and getting confusing
assertion failures/segfaults later.
Differential Revision: https://reviews.llvm.org/D38005
llvm-svn: 313699
r303378 was submitted because r303374 (Merge IAT and ILT) made lld's
output incompatible with the Binding feature. Now that r303374 was
reverted, we do not need to keep this change.
Pointed out by pcc.
llvm-svn: 313414
Various classes have `Symtab` member variables even though we have
lld::coff::Symtab variable because previous attempts to make COFF lld's
internal structure resemble to ELF's was incomplete. This patch finishes
that job by removing member variables.
llvm-svn: 311938
I'm explicitly ignoring the warning by casting to void instead of
deleting the local assignment, because it's confusing to see a
function that fails when its return value evaluates to true.
But when you see that it's a std::error_code, it makes more sense.
llvm-svn: 310965
Previously, our algorithm to compute a build id involved hashing the
executable and storing that as the GUID in the CV Debug Record chunk,
and setting the age to 1.
This breaks down in one very obvious case: a user adds some newlines to
a file, rebuilds, but changes nothing else. This causes new line
information and new file checksums to get written to the PDB, meaning
that the debug info is different, but the generated code would be the
same, so we would write the same build over again with an age of 1.
Anyone using a symbol cache would have a problem now, because the
debugger would open the executable, look at the age and guid, find a
matching PDB in the symbol cache and then load it. It would never copy
the new PDB to the symbol cache.
This patch implements the canonical Windows algorithm for updating
a build id, which is to check the existing executable first, and
re-use an existing GUID while bumping the age if it already
exists.
Differential Revision: https://reviews.llvm.org/D36758
llvm-svn: 310961