Also, forgot to say in the commit message of r212238: Library authors will
see a warning about this issue if they build with -Wsystem-headers.
llvm-svn: 212243
vector type legalization strategies in a more fine grained manner, and
change the legalization of several v1iN types and v1f32 to be widening
rather than scalarization on AArch64.
This fixes an assertion failure caused by scalarizing nodes like "v1i32
trunc v1i64". As v1i64 is legal it will fail to scalarize v1i32.
This also provides a foundation for other targets to have more granular
control over how vector types are legalized.
Patch by Hao Liu, reviewed by Tim Northover. I'm committing it to allow
some work to start taking place on top of this patch as it adds some
really important hooks to the backend that I'd like to immediately start
using. =]
http://reviews.llvm.org/D4322
llvm-svn: 212242
r210091 made initialization checking more strict in c++11 mode. LWG2193 is
about changing standard libraries to still be valid under these new rules,
but older libstdc++ (e.g. libstdc++4.6 in -D_GLIBCXX_DEBUG=1 mode, or stlport)
do not implement that yet. So fall back to the C++03 semantics for container
classes in system headers below the std namespace.
llvm-svn: 212238
This reverts commit r212205.
Reverting this again, still seeing crashes when building compiler-rt...
Sorry for the continued noise, not sure why I'm failing to reproduce
this locally.
llvm-svn: 212226
See http://reviews.llvm.org/D4366 for details.
Change by Paul Paul Osmialowski
Today this is the only problem that I'm facing trying to cross-compile lldb for AArch64 using Linaro's toolchain.
PTRACE_GETREGS, PTRACE_SETREGS, PTRACE_GETFPREGS, PTRACE_SETFPREGS are not defined for AArch64
These things can be defined different ways for other architectures, e.g. for x86_64 Linux, asm/ptrace-abi.h defines them as preprocessor constants while sys/ptrace.h defines them in enum along with corresponding PT_* preprocessor constants
NativeProcessLinux.cpp includes sys/ptrace.h
To avoid accidental redefinition of enums with preprocessor constants, I'm proposing this patch which first checks for PT_* preprocessor constants then checks for PTRACE_* constants then when it still can not find them, it defines preprocessor constants.
Similar approach was already used for PTRACE_GETREGSET and PTRACE_SETREGSET constants; in this case however it was easier, since enum values in sys/ptrace.h and preprocessor constants shared all exactly the same names (e.g. there's no additional PT_GETREGSET name defined).
llvm-svn: 212225
This new multiclass, avx512_perm_table_3src derives from the current one and
provides the Pat<>. The next patch will add another Pat<> that uses the
writemask.
Note that I dropped the type annotation from the intrinsic call, i.e.: (v16f32
VR512:$src1) -> R512:$src1. I think that this should be fine (at least many
intrinsic calls don't provide them) and it greatly reduces the number of
template arguments.
llvm-svn: 212222
This includes assembler and codegen support (see the new tests in
avx512-encodings.s and avx512-shuffle.ll).
<rdar://problem/17492620>
llvm-svn: 212221
Windows does support pipes, but they do so in a slightly different way. Added a Host layer which abstracts the use of pipes into a new Pipe class that everyone can use.
Windows benefits include:
- Being able to interrupt running processes when IO is directly hooked up
- being able to interrupt long running python scripts
- being able to interrupt anything based on ConnectionFileDescriptor
llvm-svn: 212220
SGPRs are written by instructions that sometimes will ignore control flow,
which means if you have code like:
if (VGPR0) {
SGPR0 = S_MOV_B32 0
} else {
SGPR0 = S_MOV_B32 1
}
The value of SGPR0 will 1 no matter what the condition is.
In order to deal with this situation correctly, we need to view the
program as if it were a single basic block when we calculate the
live ranges for the SGPRs. They way we actually update the live
range is by iterating over all of the segments in each LiveRange
object and setting the end of each segment equal to the start of
the next segment. So a live range like:
[3888r,9312r:0)[10032B,10384B:0) 0@3888r
will become:
[3888r,10032B:0)[10032B,10384B:0) 0@3888r
This change will allow us to use SALU instructions within branches.
llvm-svn: 212215
The new library is 150KB on a Release+Asserts build, so it is quiet a bit of
code that regular users of MC don't need to link with now.
llvm-svn: 212209
The only part using Carbon is a function in Host.mm used to open a file in Xcode.
That code is broken and it is no longer useful as Xcode supports LLDB natively.
llvm-svn: 212208
Originally committed in r211723, reverted in r211724 due to failure
cases found and fixed (ArgumentPromotion: r211872, Inlining: r212065),
committed again in r212085 and reverted again in r212089 after fixing
some other cases, such as debug info subprogram lists not keeping track
of the function they represent (r212128) and then short-circuiting
things like LiveDebugVariables that build LexicalScopes for functions
that might not have full debug info.
And again, I believe the invariant actually holds for some reasonable
amount of code (but I'll keep an eye on the buildbots and see what
happens... ).
Original commit message:
PR20038: DebugInfo: Inlined call sites where the caller has debug info
but the call itself has no debug location.
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined instructions.
llvm-svn: 212205
heuristic.
By default, no functionality change.
This is a follow-up of r212099.
This hook provides a finer grain to control the optimization.
<rdar://problem/17444599>
llvm-svn: 212204
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
llvm-svn: 212203
This reverts commits r212189 and r212190.
While this pass was accidentally disabled (until r212073), r205437
slipped in a use of `auto` that should have been `auto&`.
This fixes PR20188.
llvm-svn: 212201
As our delinearization works optimistically, we need in some cases run-time
checks that verify our optimistic assumptions. A simple example is the
following code:
void foo(long n, long m, long o, double A[n][m][o]) {
for (long i = 0; i < 100; i++)
for (long j = 0; j < 150; j++)
for (long k = 0; k < 200; k++)
A[i][j][k] = 1.0;
}
After clang linearized the access to A and we delinearized it again to
A[i][j][k] we need to ensure that we do not access the delinearized array
out of bounds (this information is not available in LLVM-IR). Hence, we
need to verify the following constraints at run-time:
CHECK: Assumed Context:
CHECK: [o, m] -> { : m >= 150 and o >= 200 }
llvm-svn: 212198