Summary:
This follows D14577 to treat ARMv6-J as an alias for ARMv6,
instead of an architecture in its own right.
The functional change is that the default CPU when targeting ARMv6-J
changes from arm1136j-s to arm1136jf-s, which is currently used as
the default CPU for ARMv6; both are, in fact, ARMv6-J CPUs.
The J-bit (Jazelle support) is irrelevant to LLVM, and it doesn't
affect code generation, attributes, optimizations, or anything else,
apart from selecting the default CPU.
Reviewers: rengolin, logan, compnerd
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14755
llvm-svn: 253675
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
It turns out we decide whether to use SjLj exceptions or some alternative in
two separate places in the backend, and they disagreed with each other. This
led to inconsistent code and is generally a terrible idea.
So make them consistent and add an assert that they *do* match (unfortunately
MCAsmInfo isn't available in opt, so it can't be used to initialise the CodeGen
version directly).
llvm-svn: 253502
If a section is rw, it is irrelevant if the dynamic linker will write to
it or not.
It looks like llvm implemented this because gcc was doing it. It looks
like gcc implemented this in the hope that it would put all the
relocated items close together and speed up the dynamic linker.
There are two problem with this:
* It doesn't work. Both bfd and gold will map .data.rel to .data and
concatenate the input sections in the order they are seen.
* If we want a feature like that, it can be implemented directly in the
linker since it knowns where the dynamic relocations are.
llvm-svn: 253436
The underlying issues surrounding codegen for 32-bit vselects have been resolved. The pessimistic costs for 64-bit vselects remain due to the bad
scalarization that is still happening there.
I tested this on A57 in T32, A32 and A64 modes. I saw no regressions, and some improvements.
From my benchmarks, I saw these improvements in A57 (T32)
spec.cpu2000.ref.177_mesa 5.95%
lnt.SingleSource/Benchmarks/Shootout/strcat 12.93%
lnt.MultiSource/Benchmarks/MiBench/telecomm-CRC32/telecomm-CRC32 11.89%
I also measured A57 A32, A53 T32 and A9 T32 and found no performance regressions. I see much bigger wins in third-party benchmarks with this change
Differential Revision: http://reviews.llvm.org/D14743
llvm-svn: 253349
Currently, if the assembler encounters an error after parsing (such as an
out-of-range fixup), it reports this as a fatal error, and so stops after the
first error. However, for most of these there is an obvious way to recover
after emitting the error, such as emitting the fixup with a value of zero. This
means that we can report on all of the errors in a file, not just the first
one. MCContext::reportError records the fact that an error was encountered, so
we won't actually emit an object file with the incorrect contents.
Differential Revision: http://reviews.llvm.org/D14717
llvm-svn: 253328
The way prelink used to work was
* The compiler decides if a given section only has relocations that
are know to point to the same DSO. If so, it names it
.data.rel.ro.local<something>.
* The static linker puts all of these together.
* The prelinker program assigns addresses to each library and resolves
the local relocations.
There are many problems with this:
* It is incompatible with address space randomization.
* The information passed by the compiler is redundant. The linker
knows if a given relocation is in the same DSO or not. If could sort
by that if so desired.
* There are newer ways of speeding up DSO (gnu hash for example).
* Even if we want to implement this again in the compiler, the previous
implementation is pretty broken. It talks about relocations that are
"resolved by the static linker". If they are resolved, there are none
left for the prelinker. What one needs to track is if an expression
will require only dynamic relocations that point to the same DSO.
At this point it looks like the prelinker is an historical curiosity.
For example, fedora has retired it because it failed to build for two
releases
(http://pkgs.fedoraproject.org/cgit/prelink.git/commit/?id=eb43100a8331d91c801ee3dcdb0a0bb9babfdc1f)
This patch removes support for it. That is, it stops printing the
".local" sections.
llvm-svn: 253280
Function ARMConstantIslands::doInitialJumpTablePlacement() iterates over all
basic blocks in a machine function. It calls `MI = MBB.getLastNonDebugInstr()`
to get the last instruction in each block and then uses MI->getOpcode() to
decide what to do. If getLastNonDebugInstr() returns MBB.end() (for example,
when the block does not contain any instructions) then calling getOpcode() on
this value is incorrect. Avoid this problem by checking the result of
getLastNonDebugInstr().
Differential Revision: http://reviews.llvm.org/D14694
llvm-svn: 253222
Storing the source location of the expression that created a constant pool
entry allows us to emit better error messages if we later discover that the
expression cannot be represented by a relocation.
Differential Revision: http://reviews.llvm.org/D14646
llvm-svn: 253220
The MCValue class can store a SMLoc to allow better error messages to be
emitted if an error is detected after parsing. The ARM and AArch64 assembly
parsers were not setting this, so error messages did not have source
information.
Differential Revision: http://reviews.llvm.org/D14645
llvm-svn: 253219
Summary:
* ARMv6KZ is the "canonical" name, given in the ARMARM
* ARMv6Z is an "official abbreviation" for it, mentioned in the ARMARM
* ARMv6ZK is a popular misspelling, which we should support as an alias.
The patch corrects the handling of the names.
Functional changes:
* ARMv6Z no longer treated as an architecture in its own right
* ARMv6ZK renamed to ARMv6KZ, accepting ARMv6ZK as an alias
* arm1176jz-s and arm1176jzf-s recognized as ARMv6ZK, instead of ARMv6K
* default ARMv6K CPU changed to arm1176j-s
Reviewers: rengolin, logan, compnerd
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14568
llvm-svn: 253206
This allows for accurate architecture targeting as well as removing
duplicate information (hardcoded feature strings) from MCTargetDesc.
llvm-svn: 253196
This was left implicit and never ever checked, which means we could have a CMPZ against some non-zero value and we were carrying on with BFI conversion regardless.
Caught by Oliver Stannard using csmith; regression test added.
llvm-svn: 253195
MCRelaxableFragment previously kept a copy of MCSubtargetInfo and
MCInst to enable re-encoding the MCInst later during relaxation. A copy
of MCSubtargetInfo (instead of a reference or pointer) was needed
because the feature bits could be modified by the parser.
This commit replaces the MCSubtargetInfo copy in MCRelaxableFragment
with a constant reference to MCSubtargetInfo. The copies of
MCSubtargetInfo are kept in MCContext, and the target parsers are now
responsible for asking MCContext to provide a copy whenever the feature
bits of MCSubtargetInfo have to be toggled.
With this patch, I saw a 4% reduction in peak memory usage when I
compiled verify-uselistorder.lto.bc using llc.
rdar://problem/21736951
Differential Revision: http://reviews.llvm.org/D14346
llvm-svn: 253127
MCSubtargetInfo in the subclasses into MCTargetAsmParser and define a
member function getSTI.
This is done in preparation for making changes to shrink the size of
MCRelaxableFragment. (see http://reviews.llvm.org/D14346).
llvm-svn: 253124
Summary:
This patch changes ARMV5, ARMV5E, ARMV6SM, ARMV6HL, ARMV7, ARMV7L,
ARMV7HL, ARMV7EM to be treated as aliases for the corresponding
standard architectures, instead of as actual architectures.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14577
llvm-svn: 252903
I completely misunderstood what ARMISD::CMPZ means. It's not "compare equal to zero", it's "compare, only setting the zero/Z flag". It can either be equal-to-zero or not-equal-to-zero, and we weren't checking what sense it was.
If it's equal-to-zero, we can swap the operands around and pretend like it is not-equal-to-zero, which is both a bug fix and lets us handle more cases.
llvm-svn: 252891
I missed the side-effects of ParseBFI in my previous attempt (r252748).
Thanks dblaikie for the suggestion of adding a void use of the unused
variable instead.
llvm-svn: 252751
If we have a chain of BFIs, we may be able to combine several together into one merged BFI. We can do this if the "from" bits from one BFI OR'd with the "from" bits from the other BFI form a contiguous range, and the same with the "to" bits.
llvm-svn: 252740
ARM V6T2 has instructions for efficient count-leading/trailing-zeros, so this should be
considered a cheap operation (and therefore fair game for speculation) for any ARM V6T2
implementation.
The net result of allowing this speculation for the regression tests in this patch is
that we get this code:
ctlz:
clz r0, r0
bx lr
cttz:
rbit r0, r0
clz r0, r0
bx lr
Instead of:
ctlz:
cmp r0, #0
moveq r0, #32
clzne r0, r0
bx lr
cttz:
cmp r0, #0
moveq r0, #32
rbitne r0, r0
clzne r0, r0
bx lr
This will help solve a general speculation/despeculation problem noted in PR24818:
https://llvm.org/bugs/show_bug.cgi?id=24818
Differential Revision: http://reviews.llvm.org/D14469
llvm-svn: 252639
Added fixes for stage2 failures: CMOV is not commutable; commuting the operands results in the condition being flipped! d'oh!
Original commit message:
If we have a CMOV, OR and AND combination such as:
if (x & CN)
y |= CM;
And:
* CN is a single bit;
* All bits covered by CM are known zero in y;
Then we can convert this to a sequence of BFI instructions. This will always be a win if CM is a single bit, will always be no worse than the TST & OR sequence if CM is two bits, and for thumb will be no worse if CM is three bits (due to the extra IT instruction).
llvm-svn: 252606
This fixes a bug in ARMAsmPrinter::EmitUnwindingInstruction where
llvm_unreachable was reached because t2ADDri wasn't handled.
Test case provided by Tim Northover.
rdar://problem/23270609
http://reviews.llvm.org/D14518
llvm-svn: 252557
"GCC requires the freestanding environment provide memcpy, memmove, memset
and memcmp": https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc/Standards.html
Hence in GNUEABI targets LLVM should not convert 'memops' to their equivalent
'__aeabi_memops'. This convertion violates GCC contract.
The -meabi flag controls whether or not LLVM will modify 'memops' in GNUEABI
targets.
Without -meabi: use the triple default EABI.
With -meabi=default: use the triple default EABI.
With -meabi=gnu: use 'memops'.
With -meabi=4 or -meabi=5: use '__aeabi_memops'.
With -meabi set to an unknown value: same as -meabi=default.
Patch by Vinicius Tinti.
llvm-svn: 252462
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
llvm-svn: 252383
Summary:
In this implementation, LiveIntervalAnalysis invents a few register
masks on basic block boundaries that preserve no registers. The nice
thing about this is that it prevents the prologue inserter from thinking
it needs to spill all XMM CSRs, because it doesn't see any explicit
physreg defs in the MI.
Reviewers: MatzeB, qcolombet, JosephTremoulet, majnemer
Subscribers: MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D14407
llvm-svn: 252318
Summary:
This review is related to another review request http://reviews.llvm.org/D11268, does the same and merely fixes a couple of issues with it.
D11268 is quite old and has merge conflicts against the current trunk.
This request
- rebases D11268 onto the new trunk;
- resolves the merge conflicts;
- fixes the prologue_end tests, which do not pass due to the subprogram definitions not marked as distinct.
Reviewers: echristo, rengolin, kubabrecka
Subscribers: aemerson, rengolin, jyknight, dsanders, llvm-commits, asl
Differential Revision: http://reviews.llvm.org/D14338
llvm-svn: 252177
We can conservatively know that CMOV's known bits are the intersection of known bits for each of its operands. This helps PerformCMOVToBFICombine find more opportunities.
I tried hard to create a testcase for this and failed - we have to sufficiently confuse DAG.computeKnownBits which can see through all the cheap tricks I tried to narrow my larger testcase down :(
This code is actually exercised in CodeGen/ARM/bfi.ll, there's just no functional difference because DAG.computeKnownBits gets the right answer in that case.
llvm-svn: 252168
The generic infrastructure already did a lot of work to decide if the
fixup value is know or not. It doesn't make sense to reimplement a very
basic case: same fragment.
llvm-svn: 252090
If we have a CMOV, OR and AND combination such as:
if (x & CN)
y |= CM;
And:
* CN is a single bit;
* All bits covered by CM are known zero in y;
Then we can convert this to a sequence of BFI instructions. This will always be a win if CM is a single bit, will always be no worse than the TST & OR sequence if CM is two bits, and for thumb will be no worse if CM is three bits (due to the extra IT instruction).
llvm-svn: 252057
Summary:
ARMv6KZ cores were set up incorrectly in ARM.td; also, the SMI mnemonic
(the old name for SMC, as defined in ARMv6KZ) wasn't supported.
Reviewers: jmolloy, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D14154
llvm-svn: 251627
At the LLVM level this ABI is essentially a minimal modification of AAPCS to
support 16-byte alignment for vector types and the stack.
llvm-svn: 251570
These MachO file directives are used by linkers and other tools to provide
compatibility information, much like the existing .ios_version_min and
.macosx_version_min.
llvm-svn: 251569
Summary:
This patch handles assembly and disassembly, but not codegen, as of yet.
Additionally, it fixes a bug whereby SP and PC as shifted-reg operands
were treated as predictable in ARMv7 Thumb; and it enables the tests
for invalid and unpredictable instructions to run on both ARMv7 and ARMv8.
Reviewers: jmolloy, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D14141
llvm-svn: 251516
This also lets us remove the versions of the functions that took a statically sized array as we can rely on ArrayRef implicit conversion now.
llvm-svn: 251490
Summary: After D13851 landed, we saw backend crashes when compiling the reduced test case included in this patch. The right fix seems to be to allow these vector types for expansion in instruction selection.
Reviewers: rengolin, t.p.northover
Subscribers: RKSimon, t.p.northover, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14082
llvm-svn: 251401
This avoid mentioning the table name an extra time and allows the lookup to be done directly in the ifs by relying on the bool conversion of the pointer.
While there make use of ArrayRef and std::find_if.
llvm-svn: 251382
Both VLDRS and VLDRD fault if the memory is not 4 byte aligned, which wasn't
really being checked before, leading to faults at runtime.
llvm-svn: 251352
In PIC mode we were previously computing global variable addresses (or GOT
entry addresses) by adding the PC, the PC-relative GOT displacement and
the GOT-relative symbol/GOT entry displacement. Because the latter two
displacements are fixed, we ended up performing one more addition than
necessary.
This change causes us to compute addresses using a single PC-relative
displacement, resulting in a shorter code sequence. This reduces code size
by about 4% in a recent build of Chromium for Android.
As a result of this change we no longer need to compute the GOT base address
in the ARM backend, which allows us to remove the Global Base Reg pass and
SDAG lowering for the GOT.
We also now no longer use the GOT when addressing a symbol which is known
to be defined in the same linkage unit. Specifically, the symbol must have
either hidden visibility or a strong definition in the current module in
order to not use the the GOT.
This is a change from the previous behaviour where we would use the GOT to
address externally visible symbols defined in the same module. I think the
only cases where this could matter are cases involving symbol interposition,
but we don't really support that well anyway.
Differential Revision: http://reviews.llvm.org/D13650
llvm-svn: 251322
Summary:
When ARMFrameLowering::emitPopInst generates a "pop" instruction to restore the callee saved registers, it checks if the LR register is among them. If so, the function may decide to remove the basic block's terminator and replace it with a "pop" to the PC register instead of LR.
This leads to a problem when the block's terminator is preceded by a "llvm.debugtrap" call. The MI iterator points to the trap in such a case, which is also a terminator. If the function decides to restore LR to PC, it erroneously removes the trap.
Reviewers: asl, rengolin
Subscribers: aemerson, jfb, rengolin, dschuff, llvm-commits
Differential Revision: http://reviews.llvm.org/D13672
llvm-svn: 251123
These were the cause of a verifier error when building 7zip with
-verify-machineinstrs. Running 'make check' with the verifier
triggered the same error on the test here so i've updated the test
to run the verifier on one of its runs instead of adding a new one.
While looking at this code, there was a stale comment that these
instructions were only used for disassembly. This probably used to
be the case, but they are now used in the 'ARM load / store optimization pass' too.
This reapplies r242300 which was reverted in r242428 due to bot failures.
Ultimately those failures were spurious and completely unrelated to this commit. I reverted this
at the time because it was thought to be at fault.
llvm-svn: 250969
Summary:
TargetLoweringBase::Expand is defined as "Try to expand this to other ops,
otherwise use a libcall." For ISD::UDIV and ISD::SDIV, the choice between
the two possibilities was defined in a rather convoluted way:
- if DIVREM is legal, expand to DIVREM
- if DIVREM has a custom lowering, expand to DIVREM
- if DIVREM libcall is defined and a remainder from the same division is
computed elsewhere, expand to a DIVREM libcall
- else, expand to a DIV libcall
This had the undesirable effect that if both DIV and DIVREM are implemented
as libcalls, then ISD::UDIV and ISD::SDIV are expanded to the heavier DIVREM
libcall, even when the remainder isn't used.
The new code adds a new LegalizeAction, TargetLoweringBase::LibCall, so that
backends can directly control whether they prefer an expansion or a conversion
to a libcall. This makes the generic lowering code even more generic,
allowing its reuse in a wider range of target-specific configurations.
The useful effect is that ARM backend will now generate a call
to __aeabi_{i,u}div rather than __aeabi_{i,u}divmod in cases where
it doesn't need the remainder. There's no functional change outside
the ARM backend.
Reviewers: t.p.northover, rengolin
Subscribers: t.p.northover, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D13862
llvm-svn: 250826
The mapping of these two intrinsics in ARMInstrInfo.td had a small
omission which lead to their operands not being validated/transformed
before being lowered into usat and ssat instructions. This can cause
incorrect instructions to be emitted.
I've also added tests for the remaining two saturating arithmatic
intrinsics @llvm.arm.qadd and @llvm.arm.qsub as they are missing
codegen tests.
llvm-svn: 250697
The Swift Machine Scheduler Model is incomplete. There are instructions
missing which can trigger the "incomplete machine model" abort. This was
observed when a downstream SchedMachineModel was added to the ARM
target.
Patch by Christof Douma!
llvm-svn: 250033
Accept r11 when targeting Windows on ARM rather than just low registers.
Because we are in a thumb-2 only mode, this may be slightly more expensive in
code size, but results in better code for the environment since it spills the
frame register, which is generally desired for fast stack walking as per the
ABI.
llvm-svn: 249804
I'll be using the function in a similar combine for AArch64. The helper was
also improved to handle undef values.
Part of http://reviews.llvm.org/D13442
llvm-svn: 249572
The ARM RTABI defines the half- to single-precision float conversion functions
with an __aeabi prefix, but libgcc only has them with a __gnu prefix. Therefore
we need to emit the __aeabi version when compiling with an eabi or eabihf
triple, and the __gnu version with a gnueabi or gnueabihf triple.
llvm-svn: 249565
Without an additional check for NEON, the compiler crashes during
legalization of NEON ldN/stN.
Differential Revision: http://reviews.llvm.org/D13508
llvm-svn: 249550
We were previously codegen'ing memcpy as regular load/store operations and
hoping that the register allocator would allocate registers in ascending order
so that we could apply an LDM/STM combine after register allocation. According
to the commit that first introduced this code (r37179), we planned to teach the
register allocator to allocate the registers in ascending order. This never got
implemented, and up to now we've been stuck with very poor codegen.
A much simpler approach for achieving better codegen is to create MEMCPY pseudo
instructions, attach scratch virtual registers to them and then, post register
allocation, expand the MEMCPYs into LDM/STM pairs using the scratch registers.
The register allocator will have picked arbitrary registers which we sort when
expanding the MEMCPY. This approach also avoids the need to repeatedly calculate
offsets which ultimately ought to be eliminated pre-RA in order to decrease
register pressure.
Fixes PR9199 and PR23768.
[This is based on Peter Collingbourne's r238473 which was reverted.]
Differential Revision: http://reviews.llvm.org/D13239
Change-Id: I727543c2e94136e0f80b8e22d5642d7b9ee5b458
Author: Peter Collingbourne <peter@pcc.me.uk>
llvm-svn: 249322
This extends the work done in r233995 so that now getFragment (in addition to
getSection) also works for variable symbols.
With that the existing logic to decide if a-b can be computed works even if
a or b are variables. Given that, the expression evaluation can avoid expanding
variables as aggressively and that in turn lets the relocation code see the
original variable.
In order for this to work with the asm streamer, there is now a dummy fragment
per section. It is used to assign a section to a symbol when no other fragment
exists.
This patch is a joint work by Maxim Ostapenko andy myself.
llvm-svn: 249303
We previously stopped producing Thumb2 relaxations when they weren't supported,
but only diagnosed the case where an actual relocation was produced. We should
also tell people if local symbols aren't going to work rather than silently
overflowing.
llvm-svn: 249164
As Richard Barton observed at http://reviews.llvm.org/D12937#inline-107121
TargetParser in LLVM has insufficient support for ARMv6Z and ARMv6ZK.
In particular, there were no tests for TrustZone being supported in these
architectures.
The patch clears a FIXME: left by Saleem Abdulrasool in r201471, and fixes
his test case which hadn't really been testing what it was claiming to test.
Differential Revision: http://reviews.llvm.org/D13236
llvm-svn: 248921
This commit changes the interface of the vld[1234], vld[234]lane, and vst[1234],
vst[234]lane ARM neon intrinsics and associates an address space with the
pointer that these intrinsics take. This changes, e.g.,
<2 x i32> @llvm.arm.neon.vld1.v2i32(i8*, i32)
to
<2 x i32> @llvm.arm.neon.vld1.v2i32.p0i8(i8*, i32)
This change ensures that address spaces are fully taken into account in the ARM
target during lowering of interleaved loads and stores.
Differential Revision: http://reviews.llvm.org/D12985
llvm-svn: 248887
supportsTailCall() has two callers. Both of them double-check isThumb1Only(),
and refuse to proceed with tail-calling in that case.
Therefore, it makes sense to move this check to
ARMSubtarget::initSubtargetFeatures, where SupportsTailCall is initialized;
and to eliminate the extra checks at the call sites.
Following a review comment, added an "assert(supportsTailCall())"
in IsEligibleForTailCall.
NFC.
llvm-svn: 248703
We now emit the compiler generated divide by zero check that was needed for the
MSVC routines. We construct a psuedo-instruction for the DBZ check as the
operation requires splitting up the BB. For the 64-bit operations, we need to
custom expand the node as we need to insert the DBZ check and then emit the
libcall to the appropriate name. Because this is target specific, it seemed
better to reproduce the expansion operation from the target-agnostic type
legalization rather than sink this there to avoid the duplication. The division
library calls now match MSVC semantically.
llvm-svn: 248561
Currently, the availability of DSP instructions (ACLE 6.4.7) is handled in a
hand-rolled tricky condition block in tools/clang/lib/Basic/Targets.cpp, with
a FIXME: attached.
This patch changes the handling of +t2dsp to be in line with other
architecture extensions.
Following a revert of r248152 and new review comments, this patch also includes
renaming FeatureDSPThumb2 -> FeatureDSP, hasThumb2DSP() -> hasDSP(), etc.
The spelling of "t2dsp" is preserved, pending a further investigation of its
possible external usage.
Differential Revision: http://reviews.llvm.org/D12937
llvm-svn: 248519
This time, the issue is that we weren't accounting for the possibility that
aligned DPRs could have been stored after the final "push" in a prologue. When
that happened we effectively moved a "sub sp, #N" from below the aligned stores
to above them, and everything went to pot.
To make it worse, I'd actually committed something testing that we produced
wrong code, so the test update is tiny.
llvm-svn: 248437
The ARM backend has some logic that only allows the fast-isel to be enabled for
subtargets where it is known to be stable. This adds a backend option to
override this and force the fast-isel to be used for any target, to allow it to
be tested.
This is an ARM-specific option, because no other backend disables the fast-isel
on a per-subtarget basis.
llvm-svn: 248369
ARM counterpart to r248291:
In the comparison failure block of a cmpxchg expansion, the initial
ldrex/ldxr will not be followed by a matching strex/stxr.
On ARM/AArch64, this unnecessarily ties up the execution monitor,
which might have a negative performance impact on some uarchs.
Instead, release the monitor in the failure block.
The clrex instruction was designed for this: use it.
Also see ARMARM v8-A B2.10.2:
"Exclusive access instructions and Shareable memory locations".
Differential Revision: http://reviews.llvm.org/D13033
llvm-svn: 248294
The vext pseudo-instruction takes the number of elements that need to be
extracted, not the number of bytes. Hence, use the number of elements
directly instead of scaling them with a factor.
Reviewers: Silviu Baranga, James Molloy
(not reflected in the differential revision)
Differential Revision: http://reviews.llvm.org/D12974
llvm-svn: 248208
Currently, the availability of DSP instructions (ACLE 6.4.7) is handled in a
hand-rolled tricky condition block in tools/clang/lib/Basic/Targets.cpp, with
a FIXME: attached.
This patch changes the handling of +t2dsp to be in line with other
architecture extensions.
Following review comments, also updating the description of FeatureDSPThumb2
in ARM.td.
Differential Revision: http://reviews.llvm.org/D12937
llvm-svn: 248152
In ARMBaseInstrInfo::isProfitableToIfCvt(), there is a simple cost model in which the number of cycles is scaled by a probability to estimate the cost. However, when the number of cycles is small (which is usually the case), there is a precision issue after the computation. To avoid this issue, this patch scales those cycles by 1024 (chosen to make the multiplication a litter faster) before they are scaled by the probability. Other variables are also scaled up for the final comparison.
Differential Revision: http://reviews.llvm.org/D12742
llvm-svn: 248018
After D10403, we had FMF in the DAG but disabled by default. Nick reported no crashing errors after some stress testing,
so I enabled them at r243687. However, Escha soon notified us of a bug not covered by any in-tree regression tests:
if we don't propagate the flags, we may fail to CSE DAG nodes because differing FMF causes them to not match. There is
one test case in this patch to prove that point.
This patch hopes to fix or leave a 'TODO' for all of the in-tree places where we create nodes that are FMF-capable. I
did this by putting an assert in SelectionDAG.getNode() to find any FMF-capable node that was being created without FMF
( D11807 ). I then ran all regression tests and test-suite and confirmed that everything passes.
This patch exposes remaining work to get DAG FMF to be fully functional: (1) add the flags to non-binary nodes such as
FCMP, FMA and FNEG; (2) add the flags to intrinsics; (3) use the flags as conditions for transforms rather than the
current global settings.
Differential Revision: http://reviews.llvm.org/D12095
llvm-svn: 247815
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change. Thanks go to Pavel Labath for fixing LLDB for me.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247692
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247683
Turning (op x (mul y k)) into (op x (lsl (mul y k>>n) n)) is beneficial when
we can do the lsl as a shifted operand and the resulting multiply constant is
simpler to generate.
Do this by doing the transformation when trying to select a shifted operand,
as that ensures that it actually turns out better (the alternative would be to
do it in PreprocessISelDAG, but we don't know for sure there if extracting the
shift would allow a shifted operand to be used).
Differential Revision: http://reviews.llvm.org/D12196
llvm-svn: 247569
We used to have this magic "hasLoadLinkedStoreConditional()" callback,
which really meant two things:
- expand cmpxchg (to ll/sc).
- expand atomic loads using ll/sc (rather than cmpxchg).
Remove it, and, instead, introduce explicit callbacks:
- bool shouldExpandAtomicCmpXchgInIR(inst)
- AtomicExpansionKind shouldExpandAtomicLoadInIR(inst)
Differential Revision: http://reviews.llvm.org/D12557
llvm-svn: 247429
The tests in isVTRNMask and isVTRN_v_undef_Mask should also check that the elements of the upper and lower half of the vectorshuffle occur in the correct order when both halves are used. Without this test the code assumes that it is correct to use vector transpose (vtrn) for the masks <1, 1, 0, 0> and <1, 3, 0, 2>, among others, but the transpose actually incorrectly generates shuffles for <0, 0, 1, 1> and <0, 2, 1, 3> in this case.
Patch by Jeroen Ketema!
llvm-svn: 247254
With subregister liveness enabled we can detect the case where only
parts of a register are live in, this is expressed as a 32bit lanemask.
The current code only keeps registers in the live-in list and therefore
enumerated all subregisters affected by the lanemask. This turned out to
be too conservative as the subregister may also cover additional parts
of the lanemask which are not live. Expressing a given lanemask by
enumerating a minimum set of subregisters is computationally expensive
so the best solution is to simply change the live-in list to store the
lanemasks as well. This will reduce memory usage for targets using
subregister liveness and slightly increase it for other targets
Differential Revision: http://reviews.llvm.org/D12442
llvm-svn: 247171
SelectT2ShifterOperandReg has identical behaviour to SelectImmShifterOperand,
so get rid of it and use SelectImmShifterOperand instead.
Differential Revision: http://reviews.llvm.org/D12195
llvm-svn: 246962
The code introduced in r244314 assumed that EXTRACT_VECTOR_ELT only
takes constant indices, but it does accept variables.
Bail out for those: we can't use them, as the shuffles we want to
reconstruct do require constant masks.
llvm-svn: 246594
Summary:
This change turns on by default interleaved access vectorization on ARM,
as it has shown to be beneficial on ARM.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12146
llvm-svn: 246541
This is especially visible in softfp mode, for example in the implementation of libm fabs/fneg functions. If we have:
%1 = vmovdrr r0, r1
%2 = fabs %1
then move the fabs before the vmovdrr:
%1 = and r1, #0x7FFFFFFF
%2 = vmovdrr r0, r1
This is never a lose, and could be a serious win because the vmovdrr may be followed by a vmovrrd, which would enable us to remove the conversion into FPRs completely.
We already do this for f32, but not for f64. Tests are added for both.
llvm-svn: 246360
For targets that didn't support this, this will let us respect the
langref instead of failing to select.
Note that we don't need to change the 32-bit x86/PPC lowerings (to
account for the result type/# difference) because they're both
custom and bypass type legalization.
llvm-svn: 246258
We can now run 32-bit programs with empty catch bodies. The next step
is to change PEI so that we get funclet prologues and epilogues.
llvm-svn: 246235
Previously in isProfitableToIfCvt() in ARMBaseInstrInfo.cpp, the multiplication between an integer and a branch probability is done manually in an unsafe way that may lead to overflow. This patch corrects those cases by using BranchProbability's member function scale() to avoid overflow (which stores the intermediate result in int64).
Differential Revision: http://reviews.llvm.org/D12295
llvm-svn: 246106
It won't go well. We've already marked 64-bit SETCCs as non-Custom, but it's just possible that a SETCC has a legal result type but an illegal operand type. If this happens, bail out before we create unselectable nodes.
Fixes PR24292. I tried to create a testcase but in 99% of cases we can't trigger this - not surprising that this bug has been latent since 2009.
llvm-svn: 245577
Summary:
The mid-end was generating vector smin/smax/umin/umax nodes, but
we were using vbsl to generatate the code. This adds the vmin/vmax
patterns and a test to check that we are now generating vmin/vmax
instructions.
Reviewers: rengolin, jmolloy
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D12105
llvm-svn: 245439
Summary:
This change limits the minimum cost of an insert/extract
element operation to 2 in cases where this would result
in mixing of NEON and VFP code.
Reviewers: rengolin
Subscribers: mssimpso, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12030
llvm-svn: 245225
function.
This was the same as getFrameIndexReference, but without the FrameReg
output.
Differential Revision: http://reviews.llvm.org/D12042
llvm-svn: 245148
This patch makes the Darwin ARM backend take advantage of TargetParser. It
also teaches TargetParser about ARMV7K for the first time. This makes target
triple parsing more consistent across llvm.
Differential Revision: http://reviews.llvm.org/D11996
llvm-svn: 245081
This reverts commit r245047.
It was failing on the darwin bots. The problem was that when running
./bin/llc -march=msp430
llc gets to
if (TheTriple.getTriple().empty())
TheTriple.setTriple(sys::getDefaultTargetTriple());
Which means that we go with an arch of msp430 but a triple of
x86_64-apple-darwin14.4.0 which fails badly.
That code has to be updated to select a triple based on the value of
march, but that is not a trivial fix.
llvm-svn: 245062
Other than some places that were handling unknown as ELF, this should
have no change. The test updates are because we were detecting
arm-coff or x86_64-win64-coff as ELF targets before.
It is not clear if the enum should live on the Triple. At least now it lives
in a single location and should be easier to move somewhere else.
llvm-svn: 245047
This was my error. We've got f32 marked as legal because they're simulated using a v2f32 instruction, but there's no equivalent for f64.
This will get test coverage imminently when D12015 lands.
llvm-svn: 244916
This overrides the default to more closely resemble the hand-crafted matching logic in ISelLowering. It makes sense, as there is no VFP equivalent of vmin or vmax, to use them when they're available even if in general VFP ops should be preferred.
This should be NFC.
llvm-svn: 244915
Other than PC-relative loads/store the patterns that match the various
load/store addressing modes have the same complexity, so the order that they
are matched is the order that they appear in the .td file.
Rearrange the instruction definitions in ARMInstrThumb.td, and make use of
AddedComplexity for PC-relative loads, so that the instruction matching order
is the order that results in the simplest selection logic. This also makes
register-offset load/store be selected when it should, as previously it was
only selected for too-large immediate offsets.
Differential Revision: http://reviews.llvm.org/D11800
llvm-svn: 244882
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
Lower Intrinsic::arm_neon_vmins/vmaxs to fminnan/fmaxnan and match that instead. This is important because SDAG will soon be able to select FMINNAN itself, so we need a unified lowering path for intrinsics and SDAG.
NFCI.
llvm-svn: 244593
Lower the intrinsic to a FMINNUM/FMAXNUM node and select that instead. This is important because soon SDAG will be able to select FMINNUM/FMAXNUM itself, so we need an integrated lowering path between SDAG and intrinsics.
NFCI.
llvm-svn: 244592
Summary:
Port the ReconstructShuffle function from AArch64 to ARM
to handle mismatched incoming types in the BUILD_VECTOR
node.
This fixes an outstanding FIXME in the ReconstructShuffle
code.
Reviewers: t.p.northover, rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11720
llvm-svn: 244314
After r244074, we now have a successors() method to iterate over
all the successors of a TerminatorInst. This commit changes a bunch
of eligible loops to use it.
llvm-svn: 244260
rather than 'unsigned' for their costs.
For something like costs in particular there is a natural "negative"
value, that of savings or saved cost. As a consequence, there is a lot
of code that subtracts or creates negative values based on cost, all of
which is prone to awkwardness or bugs when dealing with an unsigned
type. Similarly, we *never* want these values to wrap, as that would
cause Very Bad code generation (likely percieved as an infinite loop as
we try to emit over 2^32 instructions or some such insanity).
All around 'int' seems a much better fit for these basic metrics. I've
added asserts to ensure that at least the TTI interface never returns
negative numbers here. If we ever have a use case for negative numbers,
we can remove this, but this way a bug where someone used '-1' to
produce a 'very large' cost will be caught by the assert.
This passes all tests, and is also UBSan clean.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D11741
llvm-svn: 244080
return StringSwitch<int>(Flags)
.Case("g", 0x1)
.Case("nzcvq", 0x2)
.Case("nzcvqg", 0x3)
.Default(-1);
...
// The _g and _nzcvqg versions are only valid if the DSP extension is
// available.
if (!Subtarget->hasThumb2DSP() && (Mask & 0x2))
return -1;
ARMARM confirms that the comment is right, and the code was wrong.
llvm-svn: 244029
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994
This adds the software division routines for the Windows RTABI. These are not
expected to be used often though as most modern Windows ARM capable targets
support hardware division. In the case that the target CPU doesnt support
hardware division, this will be the fallback.
llvm-svn: 243952
This is necessary for WatchOS support, where the compact unwind format assumes
this kind of layout. For now we only want this on Swift-like CPUs though, where
it's been the Xcode behaviour for ages. Also, since it can expand the prologue
we don't want it at -Oz.
llvm-svn: 243884
Enabling merging of extern globals appears to be generally either beneficial or
harmless. On some benchmarks suites (on Cortex-M4F, Cortex-A9, and Cortex-A57)
it gives improvements in the 1-5% range, but in the rest the overall effect is
zero.
Differential Revision: http://reviews.llvm.org/D10966
llvm-svn: 243874
In http://reviews.llvm.org/rL215382, IT forming was made more conservative under
the belief that a flag-setting instruction was unpredictable inside an IT block on ARMv6M.
But actually, ARMv6M doesn't even support IT blocks so that's impossible. In the ARMARM for
v7M, v7AR and v8AR it states that the semantics of such an instruction changes inside an
IT block - it doesn't set the flags. So actually it is fine to use one inside an IT block
as long as the flags register is dead afterwards.
This gives significant performance improvements in a variety of MPEG based workloads.
Differential revision: http://reviews.llvm.org/D11680
llvm-svn: 243869
Various targets use std::swap on specific MCAsmOperands (ARM and
possibly Hexagon as well). It might be helpful to mark those subclasses
as final, to ensure that the availability of move/copy operations can't
lead to slicing. (same sort of requirements as the non-vitual dtor -
protected or a final class)
llvm-svn: 243820
For a modulo (reminder) operation,
clang -target armv7-none-linux-gnueabi generates "__modsi3"
clang -target armv7-none-eabi generates "__aeabi_idivmod"
clang -target armv7-linux-androideabi generates "__modsi3"
Android bionic libc doesn't provide a __modsi3, instead it provides a
"__aeabi_idivmod". This patch fixes the LLVM ARMISelLowering to generate
the correct call when ever there is a modulo operation.
Differential Revision: http://reviews.llvm.org/D11661
llvm-svn: 243717
Fixing MinSize attribute handling was discussed in D11363.
This is a prerequisite patch to doing that.
The handling of OptSize when lowering mem* functions was broken
on Darwin because it wants to ignore -Os for these cases, but the
existing logic also made it ignore -Oz (MinSize).
The Linux change demonstrates a widespread problem. The backend
doesn't usually recognize the MinSize attribute by itself; it
assumes that if the MinSize attribute exists, then the OptSize
attribute must also exist.
Fixing this more generally will be a follow-on patch or two.
Differential Revision: http://reviews.llvm.org/D11568
llvm-svn: 243693
Bonus change to remove emacs major mode marker from SystemZMachineFunctionInfo.cpp because emacs already knows it's C++ from the extension. Also fix typo "appeary" in AMDGPUMCAsmInfo.h.
llvm-svn: 243585
This commit defines subtarget feature strict-align and uses it instead of
cl::opt -arm-strict-align to decide whether strict alignment should be
forced. Also, remove the logic that was checking the OS and architecture
as clang is now responsible for setting strict-align based on the command
line options specified and the target architecute and OS.
rdar://problem/21529937
http://reviews.llvm.org/D11470
llvm-svn: 243493
The 'common' section TLS is not implemented.
Current C/C++ TLS variables are not placed in common section.
DWARF debug info to get the address of TLS variables is not generated yet.
clang and driver changes in http://reviews.llvm.org/D10524
Added -femulated-tls flag to select the emulated TLS model,
which will be used for old targets like Android that do not
support ELF TLS models.
Added TargetLowering::LowerToTLSEmulatedModel as a target-independent
function to convert a SDNode of TLS variable address to a function call
to __emutls_get_address.
Added into lib/Target/*/*ISelLowering.cpp to call LowerToTLSEmulatedModel
for TLSModel::Emulated. Although all targets supporting ELF TLS models are
enhanced, emulated TLS model has been tested only for Android ELF targets.
Modified AsmPrinter.cpp to print the emutls_v.* and emutls_t.* variables for
emulated TLS variables.
Modified DwarfCompileUnit.cpp to skip some DIE for emulated TLS variabls.
TODO: Add proper DIE for emulated TLS variables.
Added new unit tests with emulated TLS.
Differential Revision: http://reviews.llvm.org/D10522
llvm-svn: 243438
Summary:
Fix the cost of interleaved accesses for ARM/AArch64.
We were calling getTypeAllocSize and using it to check
the number of bits, when we should have called
getTypeAllocSizeInBits instead.
This would pottentially cause the vectorizer to
generate loads/stores and shuffles which cannot
be matched with an interleaved access instruction.
No performance changes are expected for now since
matching/generating interleaved accesses is still
disabled by default.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11524
llvm-svn: 243270
Some shufflevectors are currently being incorrectly lowered in the AArch32
backend as the existing checks for detecting the NEON operations from the
shufflevector instruction expects the shuffle mask and the vector operands to be
of the same length.
This is not always the case as the mask may be twice as long as the operand;
here only the lower half of the shufflemask gets checked, so provided the lower
half of the shufflemask looks like a vector transpose (or even is just all -1
for undef) then the intrinsics may get incorrectly lowered into a vector
transpose (VTRN) instruction.
This patch fixes this by accommodating for both cases and adds regression tests.
Differential Revision: http://reviews.llvm.org/D11407
llvm-svn: 243103
is an immediate, in this check the value is negated and stored in and int64_t.
The value can be -2^63 yet the result cannot be stored in an int64_t and this
gives some undefined behaviour causing failures. The negation is only necessary
when the values is within a certain range and so it should not need to negate
-2^63, this patch introduces this and also a regression test.
Differential Revision: http://reviews.llvm.org/D11408
llvm-svn: 243100
Summary: Among other things, this allows -print-after-all/-print-before-all to dump IR around this pass.
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11373
llvm-svn: 243052
whether register r9 should be reserved.
This recommits r242737, which broke bots because the number of subtarget
features went over the limit of 64.
This change is needed because we cannot use a backend option to set
cl::opt "arm-reserve-r9" when doing LTO.
Out-of-tree projects currently using cl::opt option "-arm-reserve-r9" to
reserve r9 should make changes to add subtarget feature "reserve-r9" to
the IR.
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D11320
llvm-svn: 242756
Re-apply of r241928 which had to be reverted because of the r241926
revert.
This commit factors out common code from MergeBaseUpdateLoadStore() and
MergeBaseUpdateLSMultiple() and introduces a new function
MergeBaseUpdateLSDouble() which merges adds/subs preceding/following a
strd/ldrd instruction into an strd/ldrd instruction with writeback where
possible.
Differential Revision: http://reviews.llvm.org/D10676
llvm-svn: 242743
Re-apply r241926 with an additional check that r13 and r15 are not used
for LDRD/STRD. See http://llvm.org/PR24190. This also already includes
the fix from r241951.
Differential Revision: http://reviews.llvm.org/D10623
llvm-svn: 242742
whether register r9 should be reserved.
This change is needed because we cannot use a backend option to set
cl::opt "arm-reserve-r9" when doing LTO.
Out-of-tree projects currently using cl::opt option "-arm-reserve-r9" to
reserve r9 should make changes to add subtarget feature "reserve-r9" to
the IR.
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D11320
llvm-svn: 242737
This patch does the following:
* Fix FIXME on `needsStackRealignment`: it is now shared between multiple targets, implemented in `TargetRegisterInfo`, and isn't `virtual` anymore. This will break out-of-tree targets, silently if they used `virtual` and with a build error if they used `override`.
* Factor out `canRealignStack` as a `virtual` function on `TargetRegisterInfo`, by default only looks for the `no-realign-stack` function attribute.
Multiple targets duplicated the same `needsStackRealignment` code:
- Aarch64.
- ARM.
- Mips almost: had extra `DEBUG` diagnostic, which the default implementation now has.
- PowerPC.
- WebAssembly.
- x86 almost: has an extra `-force-align-stack` option, which the default implementation now has.
The default implementation of `needsStackRealignment` used to just return `false`. My current patch changes the behavior by simply using the above shared behavior. This affects:
- AMDGPU
- BPF
- CppBackend
- MSP430
- NVPTX
- Sparc
- SystemZ
- XCore
- Out-of-tree targets
This is a breaking change! `make check` passes.
The only implementation of the `virtual` function (besides the slight different in x86) was Hexagon (which did `MF.getFrameInfo()->getMaxAlignment() > 8`), and potentially some out-of-tree targets. Hexagon now uses the default implementation.
`needsStackRealignment` was being overwritten in `<Target>GenRegisterInfo.inc`, to return `false` as the default also did. That was odd and is now gone.
Reviewers: sunfish
Subscribers: aemerson, llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11160
llvm-svn: 242727
This is the first step toward supporting shrink-wrapping for this target.
The changes could be summarized by these items:
- Expand the tail-call return as part of the expand pseudo pass.
- Get rid of the assumptions that the epilogue is the exit block:
* Do not assume which registers are free in the epilogue. (This indirectly
improve the lowering of the code for the segmented stacks, see the test
cases.)
* Take into account that the basic block can be empty.
Related to <rdar://problem/20821730>
llvm-svn: 242714
Reapply r242500 now that the swift schedmodel includes LDRLIT.
This is mostly done to disable the PostRAScheduler which optimizes for
instruction latencies which isn't a good fit for out-of-order
architectures. This also allows to leave out the itinerary table in
swift in favor of the SchedModel ones.
This change leads to performance improvements/regressions by as much as
10% in some benchmarks, in fact we loose 0.4% performance over the
llvm-testsuite for reasons that appear to be unknown or out of the
compilers control. rdar://20803802 documents the investigation of
these effects.
While it is probably a good idea to perform the same switch for the
other ARM out-of-order CPUs, I limited this change to swift as I cannot
perform the benchmark verification on the other CPUs.
Differential Revision: http://reviews.llvm.org/D10513
llvm-svn: 242588
These pseudo instructions are only lowered after register allocation and
are therefore still present when the machine scheduler runs.
Add a run: line to a testcase that uses the uncommon flags necessary to
actually produce a LDRLIT instruction on swift.
llvm-svn: 242587
This is mostly done to disable the PostRAScheduler which optimizes for
instruction latencies which isn't a good fit for out-of-order
architectures. This also allows to leave out the itinerary table in
swift in favor of the SchedModel ones.
This change leads to performance improvements/regressions by as much as
10% in some benchmarks, in fact we loose 0.4% performance over the
llvm-testsuite for reasons that appear to be unknown or out of the
compilers control. rdar://20803802 documents the investigation of
these effects.
While it is probably a good idea to perform the same switch for the
other ARM out-of-order CPUs, I limited this change to swift as I cannot
perform the benchmark verification on the other CPUs.
Differential Revision: http://reviews.llvm.org/D10513
llvm-svn: 242500
Constructing a name based on the function name didn't give us a unique
symbol if we had more than one setjmp in a function. Using
MCContext::createTempSymbol() always gives us a unique name.
Differential Revision: http://reviews.llvm.org/D9314
llvm-svn: 242482
llvm.eh.sjlj.setjmp was used as part of the SjLj exception handling
style but is also used in clang to implement __builtin_setjmp. The ARM
backend needs to output additional dispatch tables for the SjLj
exception handling style, these tables however can't be emitted if
llvm.eh.sjlj.setjmp is simply used for __builtin_setjmp and no actual
landing pad blocks exist.
To solve this issue a new llvm.eh.sjlj.setup_dispatch intrinsic is
introduced which is used instead of llvm.eh.sjlj.setjmp in the SjLj
exception handling lowering, so we can differentiate between the case
where we actually need to setup a dispatch table and the case where we
just need the __builtin_setjmp semantic.
Differential Revision: http://reviews.llvm.org/D9313
llvm-svn: 242481
This reverts commit r242300.
This is causing buildbot failures which we are investigating.
I'll reapply once we know whats going on, but for now want to
get the bots green.
llvm-svn: 242428
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
This patch is quite boring overall, except for some uglyness in
ASMPrinter which has a getDataLayout function but has some clients
that use it without a Module (llmv-dsymutil, llvm-dwarfdump), so
some methods are taking a DataLayout as parameter.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11090
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 242386
pairs for 32-bit immediates.
This change is needed to avoid emitting movt/movw pairs when doing LTO
and do so on a per-function basis.
Out-of-tree projects currently using cl::opt option -arm-use-movt=0 or
false to avoid emitting movt/movw pairs should make changes to add
subtarget feature "+no-movt" (see the changes made to clang in r242368).
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D11026
llvm-svn: 242369
The pass here was clearing kill flags on instructions which had
their sources killed in the instruction being combined. But
given that the new instruction is inserted after the existing ones,
any existing instructions with kill flags will lead to the verifier
complaining that we are reading an undefined physreg.
For example, what we had prior to this optimization is
t2STRi12 %R1, %SP, 12
t2STRi12 %R1<kill>, %SP, 16
t2STRi12 %R0<kill>, %SP, 8
and prior to this fix that would generate
t2STRi12 %R1<kill>, %SP, 16
t2STRDi8 %R0<kill>, %R1, %SP, 8
This is clearly incorrect as it didn't clear the kill flag on R1
used with offset 16 because there was no kill flag on the instruction
with offset 12.
After this change we clear the kill flag on the offset 16 instruction
because we know it will be used afterwards in the new instruction.
I haven't provided a test case. I have a small test, but even it is
very sensitive to register allocation order which isn't ideal.
llvm-svn: 242359
Pass a const reference to LiveRegMatrix to getRegAllocationHints()
because some targets can prodive better hints if they can test whether a
physreg has been used for register allocation yet.
llvm-svn: 242340
These were the cause of a verifier error when building 7zip with
-verify-machineinstrs. Running 'make check' with the verifier
triggered the same error on the test here so i've updated the test
to run the verifier on one of its runs instead of adding a new one.
While looking at this code, there was a stale comment that these
instructions were only used for disassembly. This probably used to
be the case, but they are now used in the 'ARM load / store optimization pass' too.
llvm-svn: 242300
Summary:
processFunctionBeforeCalleeSavedScan was renamed to determineCalleeSaves and now takes a BitVector parameter as of rL242165, reviewed in http://reviews.llvm.org/D10909
WebAssembly is still marked as experimental and therefore doesn't build by default. It does, however, grep by default! I notice that processFunctionBeforeCalleeSavedScan is still mentioned in a few comments and error messages, which I also fixed.
Reviewers: qcolombet, sunfish
Subscribers: jfb, dsanders, hfinkel, MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D11199
llvm-svn: 242242
This changes TargetFrameLowering::processFunctionBeforeCalleeSavedScan():
- Rename the function to determineCalleeSaves()
- Pass a bitset of callee saved registers by reference, thus avoiding
the function-global PhysRegUsed bitset in MachineRegisterInfo.
- Without PhysRegUsed the implementation is fine tuned to not save
physcial registers which are only read but never modified.
Related to rdar://21539507
Differential Revision: http://reviews.llvm.org/D10909
llvm-svn: 242165
The 64/128-bit vector types are legal if NEON instructions are
available. However, there was no matching patterns for @llvm.cttz.*()
intrinsics and result in fatal error.
This commit fixes the problem by lowering cttz to:
a. ctpop((x & -x) - 1)
b. width - ctlz(x & -x) - 1
llvm-svn: 242037
Register r12 ('ip') is used by GCC for this purpose
and hence is used here. As discussed on the GCC mailing
list, the register choice is an ABI issue and so
choosing the same register as GCC means
__builtin_call_with_static_chain is compatible.
A similar patch has just gone in the AArch64 backend,
so this is just the ARM counterpart, following the same
discussion.
Patch by Stephen Cross.
llvm-svn: 241996
Disallow all mutation of `MCSubtargetInfo` expect the feature bits.
Besides deleting the assignment operators -- which were dead "code" --
this restricts `InitMCProcessorInfo()` to subclass initialization
sequences, and exposes a new more limited function called
`setDefaultFeatures()` for use by the ARMAsmParser `.cpu` directive.
There's a small functional change here: ARMAsmParser used to adjust
`MCSubtargetInfo::CPUSchedModel` as a side effect of calling
`InitMCProcessorInfo()`, but I've removed that suspicious behaviour.
Since the AsmParser shouldn't be doing any scheduling, there shouldn't
be any observable change...
llvm-svn: 241961
Force all creators of `MCSubtargetInfo` to immediately initialize it,
merging the default constructor and the initializer into an initializing
constructor. Besides cleaning up the code a little, this makes it clear
that the initializer is never called again later.
Out-of-tree backends need a trivial change: instead of calling:
auto *X = new MCSubtargetInfo();
InitXYZMCSubtargetInfo(X, ...);
return X;
they should call:
return createXYZMCSubtargetInfoImpl(...);
There's no real functionality change here.
llvm-svn: 241957
Remove all calls to `MCSubtargetInfo::InitCPUSched()` and merge its body
into the only relevant caller, `MCSubtargetInfo::InitMCProcessorInfo()`.
We were only calling the former after explicitly calling the latter with
the same CPU; it's confusing to have both methods exposed.
Besides a minor (surely unmeasurable) speedup in ARM and X86 from
avoiding running the logic twice, no functionality change.
llvm-svn: 241956
This commit factors out common code from MergeBaseUpdateLoadStore() and
MergeBaseUpdateLSMultiple() and introduces a new function
MergeBaseUpdateLSDouble() which merges adds/subs preceding/following a
strd/ldrd instruction into an strd/ldrd instruction with writeback where
possible.
Differential Revision: http://reviews.llvm.org/D10676
llvm-svn: 241928
Summary:
The target frame lowering's concrete type is always known in RegisterInfo, yet it's only sometimes devirtualized through a static_cast. This change adds an auto-generated static function <Target>GenRegisterInfo::getFrameLowering(const MachineFunction &MF) which does this devirtualization, and uses this function in all targets which can.
This change was suggested by sunfish in D11070 for WebAssembly, I figure that I may as well improve the other targets while I'm here.
Subscribers: sunfish, ted, llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11093
llvm-svn: 241921
This improves the logic in several ways and is a preparation for
followup patches:
- First perform an analysis and create a list of merge candidates, then
transform. This simplifies the code in that you have don't have to
care to much anymore that you may be holding iterators to
MachineInstrs that get removed.
- Analyze/Transform basic blocks in reverse order. This allows to use
LivePhysRegs to find free registers instead of the RegisterScavenger.
The RegisterScavenger will become less precise in the future as it
relies on the deprecated kill-flags.
- Return the newly created node in MergeOps so there's no need to look
around in the schedule to find it.
- Rename some MBBI iterators to InsertBefore to make their role clear.
- General code cleanup.
Differential Revision: http://reviews.llvm.org/D10140
llvm-svn: 241920
This patch allows the read_register and write_register intrinsics to
read/write the RBP/EBP registers on X86 iff the targeted register is
the frame pointer for the containing function.
Differential Revision: http://reviews.llvm.org/D10977
llvm-svn: 241827
Summary:
Remove empty subclass in the process.
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren, ted
Differential Revision: http://reviews.llvm.org/D11045
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241780
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11042
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241779
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11040
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241778
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
DataLayout is no longer optional. It was initialized with or without
a DataLayout, and the DataLayout when supplied could have been the
one from the TargetMachine.
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11021
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241774
Summary:
Avoid using the TargetMachine owned DataLayout and use the Module owned
one instead. This requires passing the DataLayout up the stack to
ComputeValueVTs().
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11019
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241773
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11017
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241655
be emitted.
This is needed to enable ARM long calls for LTO and enable and disable it on a
per-function basis.
Out-of-tree projects currently using EnableARMLongCalls to emit long calls
should start passing "+long-calls" to the feature string (see the changes made
to clang in r241565).
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D9364
llvm-svn: 241566
Summary:
This concludes the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
At this point, the StringRef-form of GNU Triples should only be used in the
public API (including IR serialization) and a couple objects that directly
interact with the API (most notably the Module class). The next step is to
replace these Triple objects with the TargetTuple object that will represent
our authoratative/unambiguous internal equivalent to GNU Triples.
Reviewers: rengolin
Subscribers: llvm-commits, jholewinski, ted, rengolin
Differential Revision: http://reviews.llvm.org/D10962
llvm-svn: 241472
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
llvm-svn: 241413
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
llvm-svn: 241411
represented by uint64_t, this patch replaces these
usages with the FeatureBitset (std::bitset) type.
Differential Revision: http://reviews.llvm.org/D10542
llvm-svn: 241058